El cultivo de plátano (*Musa paradisiaca*) como modelo de producción agrícola para el fortalecimiento de la vereda Monte adentro, municipio de Saravena.

The cultivation of plantain (*Musa paradisiaca*) as a model of agricultural produce for the strengthening of the vereda Monte Adentro, municipality of Saravena

Informe final de grado

Javier Andrés Peña Salazar
Director trabajo de grado

Julieth Rossana Rodríguez González

Universidad de La Salle
Facultad de Ciencias Agropecuarias
Ingeniería agronómica
el Yopal, agosto 2018
DEDICATORIA

A Dios y la virgen, primeramente.
Mi padre (David Sánchez Lizarazo)
Mi madre (Alicia González Merchán)
Mi hermano (Brayan David Sánchez González)

AGRADECIMIENTOS.

Mis más sinceros agradecimientos a:
A la Universidad de La Salle
Doctor Luis Felipe Martínez
Al Banco de Bogotá
Al Hno. Carlos Gómez
Al Hno. Alberto Prada San Miguel
Al Hno. Gonzalo Achuri
Al I.A Javier Andrés Peña Salazar
A todos los profesores del proyecto Utopía
Al equipo de proyectos productivos
TABLA DE CONTENIDO

Resumen ... 7
1. INTRODUCCIÓN ... 9
2. COMPONENTE DE INGENIERÍA AGRONÓMICA ... 10
 3.1 Localización y caracterización. ... 10
 3.2 Material vegetal ... 11
 3.3 Requerimientos edafoclimaticos zona y especie.. 12
 3.4 Preparación del terreno y siembra.. 12
 3.4 Nutrición del cultivo de plátano .. 15
 3.6 Requerimiento de la especie. ... 15
 3.7 Manejo de recursos hídricos. ... 17
 3.8 Manejo integrado de plagas, enfermedades y arvenses (MIPEA) 18
 3.9 Cosecha y pos cosecha .. 21
3. COMPONENTE DE INVESTIGACIÓN ... 22
4. COMPONENTE DE LIDERAZGO SOCIAL, POLÍTICO Y PRODUCTIVO 23
 5.1 Descripción de la actividad .. 23
 5.2 Contextualización de la comunidad ... 25
5. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO ... 25
 6.2 T.I. R ... 26
 6.3 Inversión fija .. 27
6. RESULTADOS Y DISCUSIÓN COMPONENTES PPZO ... 27
 7.1 Componente Ingeniería Agronómica .. 27
 7.2 Componente de investigación .. 29
 7.3 Componente Social ... 33
 7.4 Componente de empresarización del campo ... 34
7. CONCLUSIONES ... 37
8. BIBLIOGRAFIA ... 38
9. ANEXOS .. 41
 10.1 Fluctuación de las precipitaciones en la vereda Monte Adentro 41
10.2 Control del gusano cogollero (*S. frugiperda*) ... 41
10.4 Control de arvenses ... 43

Fuente: Elaboración propia.. 43

10.5 Comportamiento del precio del plátano .. 43
10.6 Flujo de caja del proyecto .. 44
10.7 Costos directos e indirectos del proyecto ... 45
10.8 Curso de Buenas Prácticas Agrícolas (BPA) .. 45
10.9 Curso de plátano – Fedepacol .. 46
LISTA DE TABLAS

Tabla 1. Localización de la vereda Monte Adentro municipio de Saravena 11
Tabla 2. Material vegetal ... 11
Tabla 3. Condiciones agroclimáticas del municipio de Saravena y del cultivo de plátano. 12
Tabla 4. Malezas predominantes en el terreno a cultivar ... 13
Tabla 5. Requerimientos nutricionales del cultivo de plátano ... 15
Tabla 6. Fraccionamiento de la nutrición del cultivo de plátano .. 16
Tabla 7. Aplicaciones foliares .. 16
Tabla 8. Fungicidas aplicados .. 20
Tabla 9. Arvenses representativos en el cultivo ... 21
Tabla 10. Análisis estadístico .. 23
Tabla 11. Inversión del proyecto .. 27
Tabla 12. Precio del plátano (M. paradisiaca) en zona de origen ... 36
Tabla 13. Control de arvenses en el cultivo de plátano ... 43
LISTA DE FIGURAS

Figura 1. Curso del manejo integrado del cultivo de plátano ... 46
Figura 2. Capacitación a los estudiantes del colegio Antonio Nariño 46
Figura 3. Encuesta a los estudiantes del colegio Antonio Nariño 47
Figura 4. Capacitación a los agricultores de la vereda Monte Adentro 48
Figura 5. Labores culturales en el cultivo de plátano ... 48
Figura 6. Drenajes en el cultivo de plátano .. 49
Figura 7. Cosecha y comercialización del producto en fresco .. 49
Figura 8. Trampas para la captura del picudo negro (C. sordidus) 50
Figura 9. Análisis de suelo .. 51
Figura 10. Picudos por tratamiento .. 52
Figura 11. Trampas para picudo ... 52
Figura 12. Picudos vs precipitaciones ... 53
Figura 13. Listado de asistencia ... 53
Figura 14. Asistencia de los estudiantes del colegio Antonio Nariño 54
Resumen

Según (Ocampo et, al 2012) el cultivo de plátano (*M. paradisiaca*) en Colombia, ha sido un sector tradicional de la economía campesina, de subsistencia para pequeños productores, de alta dispersión geográfica y de gran importancia socioeconómica desde el punto de vista de seguridad alimentaria y de generación de empleo. Se estima que, del área cultivada en plátano (*M. paradisiaca*) en Colombia, un 87% se encuentra como cultivo tradicional asociado con café (*Coffe Arabia*) cacao (*Theobroma cacao*) yuca (*Manihot sculentas*) y frutales, y el restante 13%, está como monocultivo tecnificado”. Espinal C et., al (2005).

El proyecto productivo del cultivo de plátano (*M. paradisiaca*) busca un manejo integrado en cuanto a control de plagas y arvenses y enfermedades, incentivando a optimizar los recursos naturales y mejorar la calidad de vida de los agricultores. El componente social; promueve el uso racional de los envases de agroquímicos, el no reutilizarlos ya que con el tiempo causan consecuencias a la salud humana y al medio ambiente. La utilización de trampas busca disminuir las aplicaciones de insecticidas que, de manera directa e indirecta, afectan al medio ambiente y reducción de amigos naturales, razón por la cual, se evaluaron tres tipos de trampas para la captura del coleóptera (*Cosmopolites sordidus*) siendo una de las especies de mayor importancia económica en las musáceas, ocasionando pérdidas hasta del 60 % en la plantación. La comercialización, en fresco de la fruta de interés, depende del intermediario.

Palabras claves: Recursos naturales, medio ambiente, calidad de vida.
Abstract

According to (Ocampo et al, 2012) The cultivation of plantain (M. paradisiaca) in Colombia, has been a traditional sector of the peasant economy, of subsistence for small producers, of high geographical dispersion and of great socioeconomic importance from the point of view of Food security and job creation. It is estimated that, in the area cultivated in banana (M. paradisiaca) in Colombia, 87% is found as a traditional crop associated with coffee (coffe Arabia) cacao (Theobroma cacao) Yucca (Manihot sculentata) and fruit trees, and the remaining 13%, is as a technical monoculture " Espinal C et., al (2005). The productive project of banana cultivation (M. paradisiaca) seeks an integrated management in terms of pest and weeds control and disease, encouraging the optimization of natural resources and improving the quality of life of farmers. The social component; It has promoted the rational use of agrochemical containers, not reuse them because over time they cause consequences to human health and the environment. The use of traps seeks to reduce the applications of insecticides that, directly and indirectly, affect the environment and reduction of natural friends, which is why three types of traps were evaluated for the capture of Coleóptera (Cosmopolites sordidus) is one of the largest species of greater economic importance in the Musaceae, causing losses of up to 60% in the plantation. The marketing, in fresh of the fruit of interest, depends on the intermediary.

Keywords: Natural resources, environment, quality of life.
1. INTRODUCCIÓN

El departamento de Arauca posee un potencial en materia de la producción agrícola, donde las condiciones climáticas, edáficas y bajas incidencias y severidad de patógenos en algunas zonas, favorecen la productividad y el rendimiento al cultivo de plátano (*M. paradisiaca*) y cacao (*T. cacao*), gozando de un lugar privilegiado a nivel nacional. (Nieto D & Adarme W, 2014). El cultivo de plátano (*M. paradisiaca*), tiene gran importancia para la economía colombiana, representa el 9.69% del valor de la producción agrícola. ICA (2012). Conociendo la importancia del producto comercial, se logró participar por medio de la entidad de FEDECACAO en las (BPA) donde está llevando a cabo la gestión de certificación de la finca el Samán o una parte en cacao (*T. cacao*) y plátano (*M. paradisiaca*).

Según Rojas L (2018), el departamento de Arauca cuenta con aproximadamente 30.000 ha de plátano (*M. paradisiaca*) sembradas, donde el municipio de Tame cuenta con una producción del 80% en sectores como la zona del Botalón, donde se cultiva a gran escala y en monocultivo. La altura de la región de la Isla del Charo se encuentra entre los 200 y 300 msnm, donde se concentra una despensa agrícola, particularmente el cultivo de cacao (*T. cacao*), plátano (*M. paradisiaca*) y cítricos, haciendo una región reconocida por la calidad del plátano (*M. paradisiaca*) a nivel nacional, y es una de las grandes productoras de alimentos del departamento (Pulido. 2017).

Según Pulido A (2017) en la Isla del Charo, se encuentran 85 familias afiliadas a la entidad, donde la mayor parte de los productores tienen en promedio 5 hectáreas, con aproximadamente 4000 hectáreas, con rendimientos cercanos a 22 toneladas de plátano al año. La Isla del Charo, se convierte en un sector que concentra el 80% de subsistencia agrícola y genera el 20% de los empleos del municipio.
Finalmente, el establecimiento del proyecto productivo del cultivo de plátano (*M. Paradisiaca*) busca integrar el componente agronómico, social, investigativo y empresarial. A raíz de ello, se conoce una problemática de condiciones ambientales, en la región de la Isla del Charo, la cual se encuentra en el municipio de Saravena, entre los ríos Arauca, Banadias y Madre Vieja. Esta condición hace que sea una zona con alta tendencia a inundaciones por la influencia varios ríos.

De acuerdo al IGAC (2006) citado por Pulido (2017) el 29.9% tiene alta amenaza por inundaciones que incluye a la totalidad de la Isla del Charo y las zonas aledañas a los cursos de agua, trayendo como consecuencias la disminución de oxígeno en el suelo, la alta humedad, las bajas temperaturas, un aumento en la predisposición al ataque de plagas y enfermedades ICA (2012). A parte de ello, los envases de agroquímicos, se reutilizan o los queman, donde se orientó, al uso correcto de los recipientes, para disminuir inconvenientes de salud y contrarrestar las contaminaciones al medio ambiente. También se implementaron nuevos manejos integrados viéndose reflejada la producción y calidad del producto.

2. COMPONENTE DE INGENIERÍA AGRONÓMICA

3.1 Localización y caracterización.

El municipio de Saravena se encuentra localizado en la Orinoquía colombiana, noroccidente del departamento de Arauca. La Isla del Charo, la conforman 12 distritos, de los cuales se encuentra la vereda Monte Adentro, corregimiento de Puerto Nariño, donde se estableció el proyecto productivo del cultivo de plátano (*M. paradisiaca*), en la finca el Samán.
Tabla 1. Localización de la vereda Monte Adentro municipio de Saravena

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento</td>
<td>Arauca</td>
</tr>
<tr>
<td>Municipio</td>
<td>Saravena</td>
</tr>
<tr>
<td>Corregimiento/Vereda</td>
<td>Puerto Nariño / Monte Adentro</td>
</tr>
<tr>
<td>Coordenadas</td>
<td>7°01’32.8” N y 71°45’22.9” W</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de: Google Earth (2018).

3.2 Material vegetal.

El plátano (*M. paradisiaca*) es una planta monocotiledónea, originaria del Sudeste asiático. Botánicamente se clasifica:

Tabla 2. Material vegetal

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orden</td>
<td>Escitamineas</td>
</tr>
<tr>
<td>Familia</td>
<td>Musáceas</td>
</tr>
<tr>
<td>Especie</td>
<td>Musa paradisiaca</td>
</tr>
<tr>
<td>Nombre científico</td>
<td>Musa sp</td>
</tr>
</tbody>
</table>

Fuente: (Ocampo *et., al* 2012).

El plátano (*M. paradisiaca*) es una planta herbácea, que puede alcanzar una altura hasta de 4 metros. Es un fruto partenocárpico, su propagación es asexual. En el centro alberga el meristemo apical o punto vegetativo, el sistema radicular está conformada por raíces adventicias, fasciculadas y fibrosas, que le permiten el soporte y el anclaje que evita el volcamiento. Las yemas dan origen a los colinos y se encuentra en la zona interna de la superficie del cormo para la base del entrenudo. Las hojas se originan en el punto central de crecimiento o meristemo terminal, situado en la parte superior del rizoma.
La inflorescencia se desarrolla en el interior del pseudotallo, compuesta por el raquis que sostiene la flor o bellota. (Ocampo et., al 2012).

3.3 Requerimientos edafoclimaticos zona y especie.

La altura de la región de la Isla del Charo se encuentra entre 200 y 300 msnm, algunas zonas corresponden a elementos paisajísticos del piedemonte Pulido A. (2017). La finca el Samán se encuentra a una altura de los 180 msnm, cuenta con un suelo cuya textura es franca–arcillosa, pH de 5.42, según el análisis de suelo, de la Universidad de La Salle, sede Utopía.

Tabla 3. Condiciones agroclimáticas del municipio de Saravena y del cultivo de plátano.

<table>
<thead>
<tr>
<th>Condiciones agroecológicas del municipio de Saravena</th>
<th>Condiciones agroecológicas del cultivo de (M. paradisiaca) variedad Hartón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura aproximadamente de 190 msnm a 2600 msnm.</td>
<td>Se adapta a una altura desde los 0 msnm hasta 1000 msnm.</td>
</tr>
<tr>
<td>Humedad relativa 78%</td>
<td>Humedad relativa 76%</td>
</tr>
<tr>
<td>Temperaturas que oscilan entre 27°C y 35°C</td>
<td>Temperaturas que oscilan entre 24°C y 27°C</td>
</tr>
<tr>
<td>Promedio anual de lluvias entre 4000 mm y 8000 mm</td>
<td>Precipitaciones anuales entre 1500 mm y 2000 mm</td>
</tr>
<tr>
<td>pH 5.42 (resultado del análisis de suelo, Universidad de La Salle).</td>
<td>pH que oscile entre 5 y 7</td>
</tr>
</tbody>
</table>

Fuente: (Ocampo et., al, 2012 – IDEAM (s.f) Saravena.)

3.4 Preparación del terreno y siembra.

Al lote del proyecto productivo, no se le realizó ningún pase de maquinaria, porque en los meses de junio y julio las precipitaciones fueron intensas y al realizar el pase de la maquinaria el suelo se tiende a compactar, ya que es Franco-Arcilloso, según el análisis de suelo. Motivo por el cual, se trabajó como estaba el terreno ya que presentaba un descanso de un año.
Delimitación del lote.

Se demarcó el lote donde se sembró el cultivo de plátano (*M. paradisiaca*) con la ayuda del GPS.

Limpieza del lote

Se realizó una limpieza mecánica con guadaña, ya que los arvenses presentaron un porte de 60 cm aproximadamente de altura. Posteriormente se eliminaron las plantas de plátano e hijuelos que estaban en el terreno, se repicó el pseudotallo e hijuelos y se colocaron en el centro de la calle. Las malezas que predominaron fueron las siguientes. Ver tabla 4.

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bledo</td>
<td>Amaranthus sp</td>
<td>Amarantheace</td>
</tr>
<tr>
<td>cortadera</td>
<td>Cyperus diffusus</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Falsa</td>
<td>Rotboellia</td>
<td></td>
</tr>
<tr>
<td>caminadora</td>
<td>cochinichinensis.</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>

Tabla 4. Malezas predominantes en el terreno a cultivar
Fuente: Salazar *(s.f).*

Drenajes

La finca el Samán, se encuentra en la vereda Monte Adentro, que corresponde a la Isla del Charo y tiene alta probabilidad de inundación. Por tal motivo se realizaron los respectivos drenajes del lote, estos constan de dos zanjas principales por los bordes del terreno que conducen de esquina a esquina y una en el centro del lote, cuyas medidas son; de ancho 70 cm y profundidad 80 cm. Aparte de ello se hicieron drenajes secundarios que dividen las calles del terreno, constan de 40 cm de profundidad y 50 de ancho, estas aguas conducen a un estero. Los drenajes se hicieron manualmente.

Estaquillado

El sistema de siembra se realizó en triangulo, permitiendo ubicar un número mayor de plantas por unidad de área, mejorando la aireación en la plantación y disminuir presencia de *(Mycosphaerella fijiensis)*. El trazado se realizó de la siguiente manera, primero se midió la cabuya con la ayuda del decámetro a la distancia como quedaban las plantas es decir de 2,2 metros, se pintó de rojo en las medidas correspondientes, después se
colocó en el surco del lote de lado a lado sosteniendo la cabuya con varas de matarratón (*Gliricidia sepium*), seguidamente se procede a colocar las estacas de matarratón (*G. sepium*), en el centro de los puntos rojos, donde quedaba el hueco. Por otro lado, se cortaron dos varas cuyas medidas eran de 2,6 y 2,7 metros, dado que se trabajó como estaba la topografía del terreno, distancias que corresponden a las calles.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra del material vegetal (colinos de plátano)</td>
<td>Los hijuelos de plátano (M. paradisiaca) bien seleccionados garantizan buenas condiciones agronómicas. (Martínez G. 1998). Se tuvo en cuenta el historial del lote donde se compró el material vegetal, donde no se reportó enfermedades limitantes como el moko (Ralstonia Solanacearum Raza 2) y en cuanto a plagas, el picudo negro (C. sordidus; Coleóptera) no supera el umbral de acción. El mismo autor señala que, los colinos de tipo ajuga son los más idóneos para seleccionar como semilla, ya que presentan una mejor brotación, desarrollo y reservas nutricionales.</td>
</tr>
<tr>
<td>Clasificación del material vegetal</td>
<td>Una vez terminada la actividad de arrancar los hijuelos tipo aguja, se transportaron al lote y se descargaron debajo de un bucare (Erythrina poepigiana) se procede a seleccionar el colino, es decir a un lado los grandes, medianos y pequeños después se pesaron, dando como resultado; los grandes 1.000 a 1.300 gramos, medianos 700 a 900 gramos y pequeños de 500 a 600 gramos. El mismo autor señala que, los cormos se deben almacenar bajo sombra y un tiempo no mayor a 8 días porque pierde vigor y poder germinativo. Teniendo en cuenta lo anterior, los colinos duraron almacenados 2 días debajo de un bucare (E. poepigiana) y se procedió a sembrar.</td>
</tr>
<tr>
<td>Ahoyado, desinfección, enmienda orgánica y siembra</td>
<td>Después, de terminar el ahoyado con una dimensión de 30 x 30 x 30 cm de largo, ancho y profundidad, como se clasificó el colino en grande, mediano y pequeño, así se repartió en los surcos y los cormos se dejaron al lado del hueco. Se utilizó un fungicida - bactericida AGRODYNE (I.A polietoxi – Etanol) con una dosis de 5ml por 1 litro de agua, acompañado del insecticida Numetrin (I.A Cipermetrina) con una dosis de 1 ml por 1 litro de agua. Se procedió a asperjar los colinos con la...</td>
</tr>
</tbody>
</table>
3.4 Nutrición del cultivo de plátano

La nutrición del cultivo de plátano (*M. paradisiaca*) es muy importante, porque permite una sanidad en la plantación oportuna, favoreciendo a las funciones fisiológicas, que con llevan a una mayor producción. Por tal motivo, se hizo el análisis de suelo, en el laboratorio de la Universidad de La Salle, sede Utopía, Yopal – Casanare.

3.6 Requerimiento de la especie.

A continuación, los requerimientos nutricionales del cultivo de plátano (*M. paradisiaca*), entre ellos (N, P, K, Ca y Mg). Ver tabla 5.

Tabla 5. Requerimientos nutricionales del cultivo de plátano

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Nutrientes extraídos (kg/ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>220</td>
</tr>
<tr>
<td>P</td>
<td>105</td>
</tr>
<tr>
<td>K</td>
<td>430</td>
</tr>
<tr>
<td>Ca</td>
<td>220</td>
</tr>
<tr>
<td>Mg</td>
<td>60</td>
</tr>
</tbody>
</table>

Fuente: (Belalcázar, 1991) citado por (Molina D 2016).
El método que se utilizó fue en corona, permitiendo una fertilización más homogénea al radio del plato de la planta y mejor absorción para el desarrollo radicular, se cubrió el fertilizante con el suelo, “para evitar la volatización, el cual es la principal causa de la baja eficiencia de algunos fertilizantes” (Ferraris G, et., al. 2008). La nutricion del cultivo se hizo desde el primer mes hasta el sexto mes. Ver tabla 6, donde se observa las fuentes que se utilizaron y su respectivo fraccionamiento, mes a mes.

Tabla 6. Fraccionamiento de la nutrición del cultivo de plátano

<table>
<thead>
<tr>
<th>MES</th>
<th>VICOR</th>
<th>KIESERITA</th>
<th>UREA</th>
<th>DAP</th>
<th>KCL</th>
<th>Total del compuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>30,88 g</td>
<td>67,16 g</td>
<td></td>
<td>98,04 g</td>
</tr>
<tr>
<td>2</td>
<td>0,45</td>
<td></td>
<td>30,88 g</td>
<td>56 g</td>
<td>28,40g</td>
<td>115,73 g</td>
</tr>
<tr>
<td>3</td>
<td>4,8 g</td>
<td>0,90g</td>
<td>30,88 g</td>
<td>45 g</td>
<td>28,40g</td>
<td>109,98 g</td>
</tr>
<tr>
<td>4</td>
<td>6,4 g</td>
<td>0,90g</td>
<td>23,16 g</td>
<td>34 g</td>
<td>71g</td>
<td>134,46 g</td>
</tr>
<tr>
<td>5</td>
<td>4,8 g</td>
<td></td>
<td>23,16 g</td>
<td>22,38 g</td>
<td>85,20g</td>
<td>135,54 g</td>
</tr>
<tr>
<td>6</td>
<td>15,44g</td>
<td></td>
<td>15,44g</td>
<td>71g</td>
<td>86,44g</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Aparte de la nutrición edáfica, se complementó la nutrición del cultivo con aplicaciones de fertilizantes foliares. Observar tabla 7 aplicaciones foliares.

Tabla 7. Aplicaciones foliares.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Foliar</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raizal</td>
<td>Les brinda a las plantas los nutrientes necesarios, para mejorar el sistema radicular. 5 g por 1L de agua.</td>
</tr>
<tr>
<td>2</td>
<td>Biozyme</td>
<td>Fertilizante-orgánico mineral, a base de micro elementos. 1ml por 1 L de agua.</td>
</tr>
<tr>
<td>3</td>
<td>Borofos 16</td>
<td>Fertilizante a base de boro y fosforo, 5g por 1L de agua.</td>
</tr>
</tbody>
</table>
4 | Glukoplant | Fertilizante orgánico mineral quelatado de Ca, B y Zn a base de gluconatos (GLUKOPLANT) 5ml por 1L de agua.

6 | Triadamin | Fertilizante foliar orgánico-mineral con acción bioestimulante debido a su alto nivel de aminoácidos. TRIADAMIN, aporta nitrógeno orgánico, fosforo, potasio, elementos secundarios y menores quelatados con EDTA, que son directamente asimilables por la planta. 5ml por 1L de agua.

8 | Borozincomplet + potasio polvo soluble | El potasio es catalogado uno de los elementos de calidad, encargado del engrosamiento de frutos, promueve mecanismos de resistencia en cuanto a plagas y enfermedades, se le agrega un fertilizante compuesto mezclado NPK (13-3-43) (POTASIO), polvo soluble. 1g por 1L de agua, más una papeleta de progibb (Ácido giberélico).

9 | Triadamin | Fertilizante foliar orgánico-mineral con fuente de aminoácidos. 5ml por 1L de agua.

Fuente: Elaboración propia.

3.7 Manejo de recursos hídricos.

Se llevó a cabo la elaboración del aljibe de 10 metros de profundidad como fuente hídrica al cultivo de plátano (*M. paradisiaca*) el cual, se hizo en el centro del lote, para facilitar el transporte de las mangueras y la motobomba quedara en un punto fijo. El sistema de riego por aspersión, se instaló en el mes de diciembre del año 2017, cuando la plantación tenía 4 meses.
El municipio de Saravena presenta una alta oferta hídrica debido al régimen monomodal que le permite contar con lluvias durante la mayor parte del año. Según IDEAM (s.f) en el municipio de Saravena el promedio anual de lluvias está entre 4000mm y 8000mm.

En vista de que las precipitaciones disminuyeron en el municipio y en la vereda Monte Adentro, donde no se registraron lluvias en 5 o 15 días máximos, por ende, días parcialmente soleados, con temperaturas máximas de 34 °C, y mínimas de 28 °C, haciendo que las plantas pierdan el vigor. Se acude a instalar el sistema de riego por aspersión el mes de diciembre del año 2017.

Se adecua la motobomba de 4 pulgadas en el puntillo, las cintas Golden Spray de ½ y de 100 metros de largo, se adecuaron con la ayuda de una manguera principal a lo ancho del lote, para adaptar las cintas en el centro de las calles del cultivo.

Las cintas se dejaban 2 horas por la calle del cultivo y después se cambiaban al resto del lote.

Nota: Se contaba con 4 cintas de riego, para suplirle el agua a todo el lote.

Las cintas Golden Spray permiten un riego uniforme, dejando salir micro – chorros de agua que crean un efecto lluvia, gotas pequeñas que se reparten homogéneamente sobre el suelo. Gracias a que es una cinta plana y flexible se puede instalar fácilmente en la calle del cultivo de plátano (*M. paradisiaca*). El objetivo del riego, era llevar el suelo a capacidad de campo, de tal manera que la planta encuentre los nutrientes disponibles en el suelo, para llevar a cabo sus funciones fisiológicas. Po esta razón el riego, se realizaba en horas de la mañana (5:30 am – 9:30 am) y en horas de la noche (7: 00 pm – 10 pm), dependiendo de las condiciones climáticas, se hacía el respectivo riego, para evitar pérdidas de transpiración y evaporación de la relación suelo – planta.

3.8 Manejo integrado de plagas, enfermedades y arvenses (MIPEA)

MIP

Al realizar el respectivo monitoreo, durante el ciclo vegetativo de la plantación, se observó presencia de los siguientes insectos - plaga que afectan el crecimiento y desarrollo de las plantas: Gusano cogollero (*S. frugiperda*), picudo negro (*C. sordidus*), mosca blanca (*Bemisia spp* o *Trialeurodes vaporariorum*) Diabrotica y grillos.

Nota: Se buscó hacer un manejo integrado, con el fin de integrar los controladores biológicos, es decir buscando estrategias de conservación donde se favorecieran las condiciones de desarrollo del organismo biológico de interés. Dentro de los
| **Gusano cogollero**
(Spodoptera frugiperda) | controladores biológicos, se encontró depredadores como: crisopas (*Chrysoperla externa* Hagen) voraces ante la mosca blanca (*Bemisia* spp) o (*T. vaporariorum*) y afídos y Coleópteras: coccinelidae (*Clycloneda sanguinea*) mariquitas, depredadores de afídos. La afectación por (*S. frugiperda*) fue ocasional, se encontró en efecto borde y centro del lote. El nivel de infestación del fue del 1,5 % en todo el lote con presencia de 2 larvas, por unidad productiva, por ende, se acudió al control químico con Clorpyrifos (200 EC) con una dosis del ingrediente activo de 1 cc por 1 litros de agua en loto el cultivo. También, se encontró presencia de *Diabrotica sp* en el lote, pero no se registró daño alguno, ni supera el nivel de infestación para su control, que es de 2 – 4 adultos por planta, aunque de manera directa e indirecta con el control químico que se realizó disminuye la población. El cultivo tenía 4 meses después de la siembra. En cuanto, al picudo negro (*C. sordidus*) no se aplicó ningún insecticida al suelo, ya que el control del coleóptera se realizó con trampas tipo sándwich, bisel y melaza, para dar cumplimiento al componente de investigación. Nota: Equipo utilizado en el MIP, fue un motor de espalda. |
| **Picudo negro**
(*C. sordidus*).
(*Diabrotica sp*). |
| **MIE**
Sigatoka negra (*M. fijiensis*) | Rivera L (2017) corrobora que la sigatoka negra (*M. fijiensis*) tiene 6 estadios, donde los 3 primeros el control químico funciona y se llaman pizcas, en los estadios 4,5 y 6 son manchas y el control químico no funciona, ya que el hogo cambia de estadio cada 9 o 10 días.
El deshojo sanitario es base fundamental del manejo de la enfermedad en la plantación. Por tal motivo se realizaron las siguientes labores culturales, acompañado de la desinfección de la herramienta (macheta) con agrodyne, cada 8 días.
Deshojo: Se realizaron en las hojas que presentaron pizcas en todo lo ancho de la hoja, también se tuvo en cuenta la severidad de la sigatoka negra (*M. fijiensis*) donde se encontrado grado 2 y 3 en algunas plantas que corresponde menos del 15 % y 5 % del área foliar afectada, teniendo como respaldo la tabla de Stover. En la fase productiva (bacoteo de las plantas) aumenta la severidad de la enfermedad, ya que hay un cambio fisiológico de la planta donde empieza la translocación de nutrientes hacia el racimo, donde el área foliar queda desprotegida, donde llego hasta el grado 4 que corresponde a menos del 30% del área foliar afectada.
Nota: Equipo utilizado en el MIE, fue un motor de espalda. Observar tabla 8, que corresponde a los fungicidas aplicados en la plantación. |
Tabla 8. Fungicidas aplicados

<table>
<thead>
<tr>
<th>Mes</th>
<th>Fungicidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Chlorothalonil W.P. Protectante. 1,5 g por 1 L de agua.</td>
</tr>
<tr>
<td>5</td>
<td>Benomil W.P. Sistémico. 1,5 g por 1 L de agua.</td>
</tr>
<tr>
<td></td>
<td>Furtivo: curativo (Azoxystrobin+Flutriafol). 1 cm por 1L de agua.</td>
</tr>
<tr>
<td>6</td>
<td>Kempro 250 EC (Carbendazim + Propiconazol) sistémico con acción protectante y curativa. 2 cm por 1 L de agua. acompañado de melaza.</td>
</tr>
<tr>
<td>7</td>
<td>Propiconazol: 250 EC. sistémico –preventivo-curativo.</td>
</tr>
<tr>
<td>8</td>
<td>Topgun (Azoxystrobin + Tridemorph) protectante, curativo, erradicante, traslaminar y propiedades sistémicas. 1 cm por 1L de agua.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Moko (*R. solanacearum*)

Se presentó una planta con la sintomatología de amarillamiento en la tercera hoja funcional y posterior doblamiento del peciolo, el cual fue tornando una clorosis la lámina foliar. La segunda planta empezó los síntomas en la segunda hoja, donde presento clorosis, doblamiento del peciolo y marchitez.

Al observar los síntomas de las plantas, primero se acude a información de colegas cercanos y revisión de literatura. Las plantas se dejaron en observación 3 días, durante esos días se instalaron trampas para picudo (*C. sordidus*), alrededor del perímetro del lote, para observar si había incidencia del coleóptera y estuviera afectando las unidades productivas. Solo se encontró uno a dos picudos en las seis trampas, durante los tres días. En el transcurso de dichos días la hoja bandera de las plantas se evidenciaba clorótica y con doblamiento.

El 13 de febrero del 2018, en presencia del Ingeniero Agrónomo Víctor Pinzón y teniendo en cuenta la resolución 00001769 (20/02/2017) por el ICA. Se hace un corte en cuña, para observar el tejido interno del pseudotallo (haces vasculares), que corresponda a la coloración y puntos café-rojizos que causan obstrucción de los haces vasculares por la bacteria, dando como respuesta, Moko (*R. solanacearum*).

Se aplicó glifosato en forma de espiral a las plantas (60 cc). El lote se aisló, con cintas de peligro, con el fin de evitar el ingreso del personal. El foco se presentó, en la parte
de los colinos pequeños, es decir casi terminando el cultivo del proyecto a un costado de la calle.

Nota: Se eliminaron 10 plantas que estaban cercanas a las plantas que presentaron el foco, es decir, el foco se presentó en dos calles, las unidades productivas que se encontraban cerca de la planta enferma se eliminaron (aplicación de glifosato) como medida preventiva, ya que por medio del sistema radicular se puede transmitir la bacteria.

\[I. M = \frac{\text{Área afectada} \text{ m}^2}{\text{Área total sembrada} \text{ m}^2} \times 100 \]

Se tuvo en cuenta, la fórmula anterior para saber la severidad de la afectación de la enfermedad, dando como resultado 0,02%, el cual no es significativo, pero se tomaron las medidas de precaución correspondientes.

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venadillo</td>
<td>Coyza bonariensi</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>cortadera</td>
<td>Cyperus diffusus</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Falsa caminadora</td>
<td>Rotboellia cochinchinensis</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>

Tabla 9. Arvenses representativos en el cultivo

En la tabla 9, se aprecia las arvenses más representativas durante el ciclo vegetativo del cultivo de plátano (*M. paradisiaca*). Donde sus controles fueron mecánicos y químicos (glifosato).

3.9 Cosecha y pos cosecha

Se empezó a cosechar a los 77 días después del belloteo, entre las 12 y 13 semanas después de realizar el embolsado a la fruta. Se tuvo en cuenta, los siguientes índices de cosecha; la flor de los dedos se tornará negra y las aristas de los mismos no estuvieran tan pronunciadas.
Después de separar el racimo de las unidades productivas, se transportó en la carretilla, donde se colocaron 2 o 3 racimos evitando que se maltraten, también se transportó al hombro. Se colocaron hojas de la planta en el suelo, donde se descargó la fruta. Por último, se arreglan los racimos, se le quitan frutas maduras o pintonas si las tiene, pochas o pachas si están rajadas, frutas quemadas por el rose de la bolsa y parte del raquis.

Cabe resaltar que el transporte llega directo al lote, donde se encuentra el cultivo de plátano (*M. paradisiaca*), las vías no están pavimentadas, pero son pertinentes para el punto de recolección.

3. COMPONENTE DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Ubicación del ensayo</th>
<th>El experimento se está llevando a cabo de enero a junio del 2018, en la finca el Samán, a 3 kilómetros del corregimiento de Puerto Nariño, municipio de Saravena, con una altura de 180 msnm y una temperatura que oscila entre 27 °C mínima y máxima de 34 °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivo de la investigación</td>
<td>Evaluar tres métodos de muestreo para la captura del picudo negro (C. sordidus) barrenador del plátano en Colombia.</td>
</tr>
</tbody>
</table>
| Tratamientos | El componente de investigación cuenta, con 3 tratamientos y 3 repeticiones.
- **Tratamiento 1:** Trampa tipo bisel
- **Tratamiento 2:** Trampa tipo sándwich
- **Tratamiento 3:** Melaza con pseudotallo picado |
| Variables repuestas | Se instalaron las trampas en el cultivo de plátano (*M. paradisiaca*) a los 6 meses del ciclo vegetativo de la plantación, ya que las unidades productivas empezaron a bacotear a los 6 meses y 15 días, momento, donde aumenta la incidencia del coleóptera. Durante la fase vegetativa, al realizar el monitoreo o descalcetes se hacía el control manualmente.
La trampa tipo bisel, se cubrió con hojas del deshoje en el lote y se ubicaron en el centro y efecto borde del cultivo. |
La trampa tipo sándwich, al momento de instalarla se cubrió con hojas de la planta, para propiciar un micro clima y el coleóptera sea atraído. El tratamiento 3 con melaza, al cual se le añadieron trozos de hijuelos, se le hicieron aberturas por los lados de la botella.

Se revisaron todos los días y cada dos días, especialmente las tardes, porque la temperatura ha disminuido y se encuentran un micro clima propicio para el coleóptera. Las trampas se colocaron en el centro y bordes del lote, algunas cerca de las plantas o donde el sol no fuera tan fuerte y secara rápido el pseudotallo.

<table>
<thead>
<tr>
<th>Diseño estadístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 10. Análisis estadístico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño experimental</th>
<th>Bloques completamente al azar (BCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>Tres (3)</td>
</tr>
<tr>
<td>Repeticiones</td>
<td>Tres (3)</td>
</tr>
<tr>
<td>Análisis de varianza (ANOVA)</td>
<td>Infostat</td>
</tr>
<tr>
<td>Prueba de Fisher</td>
<td>5% de confiabilidad</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

4. **COMPONENTE DE LIDERAZGO SOCIAL, POLÍTICO Y PRODUCTIVO**
Capacitar a los estudiantes de los grados 10 y 11 del colegio Antonio Nariño corregimiento de Puerto Nariño, municipio de Saravena, en la correcta disposición final de envases de agroquímicos y su relación con el impacto ambiental.

5.1 **Descripción de la actividad.**
Se organizó una jornada ecológica en conjunto de la docente del colegio Antonio Nariño del corregimiento de puerto Nariño Cecilia Gutiérrez y representantes del ICA, SENA, la empresa Amway (productos biodegradables con el cuidado del medio ambiente) agricultores
y ganaderos. La capacitación se desarrolló con los grados sextos hasta once del colegio Antonio Nariño, dando a conocer la correcta disposición de los envases de agroquímicos y su relación con el medio ambiente.

De acuerdo, a las encuestas realizadas en el colegio Antonio Nariño, corregimiento de Puerto Nariño, a los estudiantes de los grados 10 y 11, un 80 % de los estudiantes de 10 y 11 viven en la zona rural, donde sus familias cultivan plátano (*M. paradisiaca*), cacao (*T. cacao*), maíz (*Zea Maiz*), maracuyá (*Passiflora edulis*), y arroz (*Oriza sativa*), como también algunos son de fincas ganaderas.

Por tal motivo, fue necesario capacitar a los alumnos, debido a que están expuestos a productos y envases de agro-químicos, también en ocasiones los envases desocupados son reutilizados para el transporte de las bebidas de hidratación, los estudiantes de bachillerato del colegio Antonio Nariño, afirman “En mi casa utilizan los envases, para hacer pocillos y los obreros los llevan para tomar agua” Frases, como las mencionadas anteriormente son “normales” para algunas personas. A raíz de ello, los recipientes son dejados en los cultivos, de manera directa o indirectamente están generando contaminación al medio ambiente.

Por tal razón, se planeó ser un modelo de acopio y disposición final de los recipientes modelo en el cual, se tuvo en cuenta incentivar a los estudiantes, siendo ellos transmisores a sus padres o vecinos de la importancia del reciclaje de los envases e inconvenientes que se presentan para la salud y el medio ambiente. Algunos de los estudiantes manifestaron, que no sabían que las tiendas agropecuarias tenían el deber de recibirles los productos que compren para los cultivos. Esto conlleva, la falta de orientación acerca de los recipientes de agroquímicos y los problemas relacionados a la salud. Aparte de ello, se capacitaron productores de la vereda Monte Adentro, en el manejo cultural de la sigatoka (*M. fijiensis*) y
control del picudo negro (*C. sordidus*), teniendo como modelo productivo el cultivo del plátano (*M. paradisiaca*).

5.2 Contextualización de la comunidad

El componente social se proyectó como una oportunidad de ser líder, de compartir con la comunidad, en este caso se hizo partícipe todo el cuerpo estudiantil del colegio Antonio Nariño, gracias a una campaña ecológica que organizó en la institución, más los docentes titulares a cargo su respectivo grado. El enfoque de liderazgo fue dirigido a los estudiantes de los grados superiores 10 y 11, con el objetivo de que sean receptores y transmisores de la información, que conozcan los problemas ambientales y de salud que pueden generar los envases de pesticidas, ya que algunos alumnos les interesa carreras agropecuarias.

El componente social, hizo participe en la institución educativa Antonio Nariño, con los estudiantes del SER (Servicio Educativo Rural), donde se acompañó a la ingeniera industrial Heidy Bernal, en proyectos productivos. En el cual, se orientó a los ciclos 3A, 3B, 4A, 4B, 5A y 5 B, en la materia de interés, aparte de ello se les incentivo el uso correcto de los envases de agroquímicos, su relación con el medio ambiente, la salud y su respectivo deposito.

5. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO

El proceso de la comercialización se da, según los lugares o mercados de destino, de esta manera influye si el producto en fresco es almacenado o empacado en bolsas de 20 kg en el
transporte. Por otro lado, se implementó una hectárea y media en la finca el Samán, con el fin de colocar en práctica lo que se aprendió en la ejecución del proyecto productivo.

El municipio de Saravena, cuenta con entidades bancarias, como Banco Agrario, el Alcaraván, fondo emprender, que están comprometidas con el campo colombiano, con oportunidades de condonar el capital semilla invertido. Por otro lado, se vinculan asociaciones de platanicultores del departamento y municipios aledaños, que brindan la oportunidad de capacitarse en tecnologías nuevas del cultivo de plátano (*M. paradisiaca*).

6.1 V.A. N

Es el monto resultante de un proyecto o flujo de caja, que se obtiene de la sumatoria de los ingresos y la diferencia del interés compuesto y los costos del proyecto. Donde la (V.A.N) tiene que ser mayor a cero (0) para que el proyecto devuelva la inversión. En este caso se presentó una (V.A.N) de $15.510.22, haciendo un proyecto económicamente viable.

6.2 T.I. R

El capital semilla para este proyecto fue de un valor de $9.993.600 COP, donde se invirtió $8.745.000 COP durante la ejecución en campo. La tasa interna de retorno (T.I.R) permite estimar un promedio de los rendimientos económicos referente al proyecto, en este caso presentó una T.I.R del 17% con una tasa de descuento del 3% para aceptar la ejecución del proyecto.
6.3 Inversión fija

Tabla 11. Inversión del proyecto.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>$1.890.000</td>
</tr>
<tr>
<td>Insumos</td>
<td>$4.640.000</td>
</tr>
<tr>
<td>Materiales y herramientas</td>
<td>$1.540.000</td>
</tr>
<tr>
<td>Flete y transporte</td>
<td>$150.000</td>
</tr>
<tr>
<td>Arriendo de la tierra</td>
<td>$900.000</td>
</tr>
<tr>
<td>Administración</td>
<td>$160.000</td>
</tr>
<tr>
<td>Asistencia técnica</td>
<td>$160.000</td>
</tr>
<tr>
<td>Comunicaciones</td>
<td>$240.000</td>
</tr>
<tr>
<td>Imprevistos</td>
<td>$190.000</td>
</tr>
<tr>
<td>Total del proyecto invertido</td>
<td>$8.745.000</td>
</tr>
<tr>
<td>Total de ingresos</td>
<td>$32.564.622</td>
</tr>
<tr>
<td>Total de flujo neto</td>
<td>$23.819.622</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

6. RESULTADOS Y DISCUSIÓN COMPONENTES PPZO

7.1 Componente Ingeniería Agronómica

El manejo agronómico que se llevó en el cultivo de plátano (*M. paradisiaca*) se puede resaltar la clasificación del material vegetal, donde (Belalcázar. 1991) menciona que las características de los cormos, sean de aguja, de 500 a 1.000 gramos. Teniendo en cuenta lo
mencionado anteriormente y cuando se buscó el material, los colinos son dispares por tal motivo, se observó en campo que posibles diferencias se encuentran durante el ciclo vegetativo. Se llevó la clasificación, los grandes 1.000 a 1.300 gramos, medianos 700 a 900 gramos y pequeños de 500 a 600 gramos. Dando como resultados, los grandes fueron los primeros que brotaron y bellotearon, los medianos y pequeños con diferencia de 3 a 4 días brotaron y bellotearon. La plantación se encuentra homogénea en un 98%, lo que se atribuye que no importa el tamaño sino el manejo agronómico. (Martínez.2018).

La mayoría de los agricultores en la vereda Monte Adentro al emitir la bellota, hacen el desbellote y embolsan, tal cual hacen desmane, por lo general siempre dejan 6 o 7 manos al racimo es decir entre más manos mejor. En el proyecto se utilizó la siguiente metodología, al racimo se le dejaban cinco manos, con el fin de evitar gasto energético y lo compense en tamaño y peso del racimo, después se le agrego un fungicida Carbendazim (3 cm/20L de agua) para evitar problemas fúngicos y además le brinda una coloración y apariencia al fruto.

No se llevó a cabo, ninguna aplicación de insecticida al suelo, con la finalidad de evaluar los tres tipos de trampas frente al coleóptera (C. sordidus) y buscar un manejo integrado, donde se disminuyan las aplicaciones de insecticidas y se implementen alternativas de agentes entomopatogenos y cuidar los controladores biológicos. Se acudió a aplicación vía foliar de insecticida, donde la plaga pasaba el umbral de acción o se observaba que se podía convertir en plaga ocasional, donde se vio reflejado la presencia de crisopas (Chrysoperla externa Hagen) en sus estados, huevo, larva y adulto que se evidencian en la plantación.

De acuerdo al IGAC (2006), citado por (Pulido A. 2017) el 29,9% de la Isla del Charo tiene alta amenaza por inundaciones e incluye zonas aledañas entre estas la Vereda Monte Adentro, trayendo como consecuencias la disminución de oxígeno en el suelo, la alta
humedad, las bajas temperaturas, un aumento en la predisposición al ataque de plagas y enfermedades (ICA. 2012) teniendo en cuenta, lo expuesto, previamente se adecuaron drenajes principales y secundarios en la preparación del terreno, facilitando la evacuación del agua de la inundación en la fase productiva del cultivo. Problemática a la que se suman muchos agricultores, que no acuden a las medidas preventivas y tiene la probabilidad de perder los cultivos.

Los residuos de las labores culturales (deshoje, descalcete y deshije) se colocaban en el centro de las calles, con el fin de contribuir a la fauna y micro fauna del suelo, también ayudaba a controlar la presencia de arvenses.

7.2 Componente de investigación

El picudo negro (*C. sordidus*) (Coleóptera, Curculionidae) es el insecto plaga más limitante del plátano y el banano a nivel mundial (Sirjusingh *et al.* 1992, Trejo 1971), (citado por Carvajal. 2009). En la región del Caribe y América Central las pérdidas que ocasiona el picudo negro del plátano en los cultivos de banano y plátano son del 30 al 90% (Castrillón y Herrera 1980). Según la (FAO. 2010) citado por (Amado J, Herrera N & Bolaños M, 2017). Los daños ocasionados a la raíz, provocan problemas de absorción de nutrientes causando un bajo nivel de producción, obteniendo racimos pobres y puede llegar a volcar las plantas, representan pérdidas económicas hasta del 60 %.

plataneras de los departamentos del Quindío, Risaralda, Caldas, Antioquia, Valle del Cauca, Santander y Nariño.

Los picudos (*C. sordidus*) adultos son de hábitos nocturnos y carácter gregario. Su ciclo de vida es completado entre 30 o 40 días, el principal daño es causado por la larva, que eclosiona entre el quinto y octavo día y con sus mandíbulas perfora el cormo y crea galerías (López U, 2007) citado por (Carvajal O 2009). Según (Castrillón C 2000) La importancia económica del Picudo negro del plátano se encuentra en la reducción del rendimiento hasta en un 60% del peso de los racimos, lo cual equivale a pérdidas de 1,5 millones de t/año de la fruta.

Por otro lado, las perforaciones en el cormo facilitan la entrada de microorganismos patógenos como la bacteria (*R. solanacearum*) causante del “Moko”, una enfermedad mortal de los haces vasculares (Castrillón, 1989). De acuerdo, con los autores mencionados anteriormente, se conoce la problemática y consecuencias en la platanicultura colombiana por parte del coleóptera (*C. sordidus*). A raíz, de los daños causados tradicionalmente esta plaga se ha manejado con la aplicación de insecticidas sintéticos, cuyo número de aplicaciones ha venido en aumento en los últimos años. El uso excesivo de estos productos incrementa los costos de producción y provoca problemas de contaminación ambiental (Zelaya K & Talavera M 1999).

Teniendo en cuenta las problemáticas que mencionan los autores (Zelaya K & Talavera M 1999), se implementaron las trampas tipo bisel, tipo sándwich y melaza con pseudotallo picado. Con el fin de buscar nuevas alternativas al manejo de la plaga limitante, beneficios al medio ambiente y reducción en aplicaciones de síntesis química, optando por agentes entomopatogénicos como (*Beauveria Bassiana*, *Metarrhizium anisopliae* y *Paecilomyces lilacinus*), que son de categoría toxicológica IV moderadamente toxico y de
resultados favorables para el agricultor. Estos hongos entomopatogenos han sido evaluado contra un gran número de insectos plaga como el picudo del algodón (*Anthonomus grandis*), moscas blancas (*Bemisia spp*) (*Trialeurodes vaporariorum*) la broca del café (*Hypothenemus hampe*) entre otros (Carmenza E, Góngora B, Benavidez P y Marín P 2009).

Según el ICA, (2012) los tres pilares del MIP son: Prevención, observación e intervención, donde se integraron las medidas oportunas, empezando con la selección del material vegetal.

A los 6 meses y 15 días el cultivo de plátano (*M. paradisiaca*) empezó la floración, momento donde el coleóptera aumenta su incidencia, el mismo autor señala que hay una relación entre la oviposición de los adultos de un 85% de sus huevos en las plantas al momento de la aparición de la bellota, con un promedio de 12 huevos/planta. Se procede a realizar la intervención de las trampas (Tipo bisel, tipo sándwich y melaza con pseudotallo) dicha intervención se realizó y se ubicaron los tratamientos en efecto borde y al lado de las plantas, ya que esta plaga es de carácter gregario.

Según el manual de manejo fitosanitario del cultivo de plátano (ICA. 2012) el 65% de los adultos se hospedan alrededor de la planta, un 42% entre las calcetas, 23% bajo tierra y 30 % en residuos de cormos y pseudotallo dispersos en el cultivo. Teniendo en cuenta, lo mencionado anteriormente, los tratamientos fueron colocados al lado de la planta, asimismo evitando que los tratamientos quedaran expuestos al sol y por ende la deshidratación del pseudotallo ya que el material fue escaso.

Los resultados de los tratamientos utilizados en este experimento fueron pertinentes como métodos de atracción y captura del coleóptera (*C. sordidus*) en el cultivo de plátano (*M. paradisiaca*). Por la estructura de las trampas, el tratamiento 1, que corresponde al tipo bisel, tratamiento 2 tipo sándwich y tratamiento 3 melaza con pseudotallo picado, se pudo
observar que permite una estabilidad y firmeza el tratamiento 1, a diferencia del tratamiento 2, la trampa tiende a caerse con mayor facilidad, aunque se amarraban con calcetas de plátano para evitar dichos inconvenientes.

Según Ramírez C & Vallejo L (s.f) las trampas se deben renovar semanalmente con el objeto de que conserven sus características de color olor sabor indispensables para atraer los insectos. Se observó en el experimento llevado a cabo en la finca el Samán, que puede durar mes y medio las trampas instaladas, claro está, que cada dos días se cambian las hojas o el residuo utilizado para mantener constante el microclima propicio para la atracción del insecto plaga. También tener en cuenta la ubicación y orientación de manera que el sol no deshidrate rápido el pseudotallo.

El mismo autor señala, que existe una correlación negativa entre la temperatura y la captura de (C. sordidus) indicando un aumento o disminución de estos factores climáticos tienen una relación directa en la cantidad de capturas de esta especie. Teniendo en cuenta, lo expresado por Ramírez C & Vallejo L (s.f) las trampas se instalaron en el mes de febrero, donde las precipitaciones eran bajas, es decir (4,6 mm durante el mes), al transcurrir los meses así mismo aumentaron las precipitaciones y presencia del picudo negro (C. sordidus). Donde los controles fueron manuales, el pasado 4 de mayo se presentó una inundación en la finca el Samán, donde afectó el cultivo y se observó presencia del insecto – plaga, en los residuos de las labores culturales que quedaron en las plantas. No se realizó ningún control biológico o químico sobre el lote, solo manual ya que no fue representativa la incidencia.

Por otro lado, la trampa tipo bisel y sándwich ha sido reconocida por varias investigaciones que sustentan su efectividad (Aguilera, 2002; Aristizábal et al, 2008) citados por (Ramírez C & Vallejo L (s.f) razón por la cual ha sido tradicionalmente la más ampliamente usada. Ver figura 12 y 13.
Desde la perspectiva de los métodos de captura, la eficiencia está directamente relacionada con los factores climáticos que afectan el tiempo de duración de las trampas, siendo un factor muy importante al momento del aumento o disminución de la atracción. Ver Figura 14, en anexos. De la investigación se puede concluir, que las trampas son recomendables para controlar el picudo negro (C. sordidus) dichas trampas son fáciles, sencillas de instalar y amigables con el medio ambiente, ya que se reduce la utilización de productos de síntesis química, como se hace tradicionalmente, con el fin de optar por productos que ayuden a reducir la población si supera el umbral de acción, como hongos entomopatogenos.

7.3 Componente Social

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tema</th>
<th>Lugar</th>
<th>Población beneficiada</th>
<th>Número de Asistentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encuesta diagnostic inici.</td>
<td>Identificación de los alumnos que viven en la zona rural.</td>
<td>Colegio Antonio Nariño</td>
<td>Los estudiantes de los grados superiores 10 y 11.</td>
<td>85</td>
</tr>
<tr>
<td>Encuesta diagnostic inici.</td>
<td>Identificación de los alumnos que viven en la zona rural. Uso correcto de los envases de agroquímicos y relación con el medio ambiente. También se orientó (cuidado al medio ambiente- desechos de la basura en el colegio) y alternativas de los plásticos.</td>
<td>Colegio Antonio Nariño</td>
<td>Todo el cuerpo estudiantil más docentes titulares de los grados. (desde 6 hasta 11)</td>
<td>500</td>
</tr>
<tr>
<td>Campaña ecológica</td>
<td>Uso correcto de los envases de agroquímicos y relación con el medio ambiente.</td>
<td>Colegio Antonio Nariño</td>
<td>Estudiantes del SER (Servicio Educativo Rural)</td>
<td>200</td>
</tr>
<tr>
<td>Charlas de cultivos de la zona de origen y acompañamiento como docente del SER en proyectos productivos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Según la (FAO 2017) las Buenas Prácticas Agrícolas (BPA) son “prácticas orientadas a la sostenibilidad ambiental, económica y social para los procesos productivos de la explotación agrícola que garantizan la calidad e inocuidad de los alimentos y de los productos no alimenticios”. Teniendo presente que el departamento de Arauca, goza de un lugar privilegiado por la calidad del plátano (*M. paradisiaca*) a nivel nacional y la Isla del Charo que pertenece al municipio de Saravena, se concentra en actividades agrícolas particularmente en cacao (*T. cacao*) y plátano (*M. paradisiaca*). Se participó en el municipio de Arauquita en una capacitación sobre las Buenas Prácticas Agrícolas, brindadas por la Federación Nacional De Cacaoteros (FEDECACAO) en las instalaciones de la granja experimental Santa Elena.

Se está gestionando por parte de la Federación Nacional De Cacaoteros, una visita de pre Audiencia en la finca el Samán, por parte del Ingeniero Agrónomo encargado de la Isla del Charo. Con el fin de certificar una parte de la finca en los cultivos de cacao (*T. cacao*) y plátano (*M. paradisiaca*) en las (BPA).

7.4 Componente de empresarización del campo

La evaluación económica permite conocer la viabilidad financiera del proyecto. Se tenía planeado una capital semilla de $ 9.993.600 COP, de los cuales se invirtió $ 8.745.000 COP. El proyecto tenía una producción estimada de 20 t/ha de plátano (*M. paradisiaca*) en
fresco, se logró un estimado de 28 t/ha dichos ingresos son suficientes para cubrir los costos totales del proyecto, obteniendo una utilidad de $ 23.000.000 COP.

Los precios del plátano (*M. paradisiaca*) han fluctuado constantemente donde los costos disminuyen o aumentan dependiendo la demanda o escases del producto. La carga de plátano (*M. Paradisiaca*) equivale a (130 kilos) ha llegado a estar a 50.000 pesos el bueno y 30.000 pesos el parejo y el pico más alto es de 200.000 pesos el bueno y 160.000 pesos el parejo. Observar tabla 12 y anexo, gráfica 6 fluctuación del precio del plátano mes a mes.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Calidad del plátano</th>
<th>Carga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bueno</td>
<td>Parejo</td>
</tr>
<tr>
<td>Junio 2017</td>
<td>$ 80.000</td>
<td>$ 70.000</td>
</tr>
<tr>
<td>Julio 2017</td>
<td>$ 50.000</td>
<td>$ 45.000</td>
</tr>
<tr>
<td>Agosto 2017</td>
<td>$ 40.000</td>
<td>$ 30.000</td>
</tr>
<tr>
<td>Septiembre 2017</td>
<td>$ 90.000</td>
<td>$ 60.000</td>
</tr>
<tr>
<td>Octubre 2017</td>
<td>$ 80.000</td>
<td>$ 50.000</td>
</tr>
<tr>
<td>Noviembre 2017</td>
<td>$ 90.000</td>
<td>$ 60.000</td>
</tr>
<tr>
<td>Diciembre 2017</td>
<td>$110.000</td>
<td>$ 60.000</td>
</tr>
<tr>
<td>Enero 2018</td>
<td>$130.000</td>
<td>$ 70.000</td>
</tr>
<tr>
<td>Febrero 2018</td>
<td>$150.000</td>
<td>$ 80.000</td>
</tr>
<tr>
<td>Marzo 2018</td>
<td>$190.000</td>
<td>$150.000</td>
</tr>
<tr>
<td>Abril 2018</td>
<td>$160.000</td>
<td>$ 90.000</td>
</tr>
<tr>
<td>Mayo 2018</td>
<td>$180.000</td>
<td>$150.000</td>
</tr>
<tr>
<td>Junio 2018</td>
<td>$170.000</td>
<td>$110.000</td>
</tr>
<tr>
<td>Julio 2018</td>
<td>$150.000</td>
<td>$100.000</td>
</tr>
</tbody>
</table>
Por otro lado, el sector platanero de Arauca se centra fundamentalmente en la producción y comercialización en fresco del producto, teniendo como mercados de destino local e internacional. El sector está incursionando en nuevas líneas de negocios como la transformación industrial del plátano, ofreciendo ampliar el número de mercados de dicho producto.

Teniendo en cuenta, las proyecciones y fortalezas de la despensa agrícola del piedemonte del sector agropecuario en el departamento, donde cuenta con 31.120 hectáreas sembradas según la secretaria de Desarrollo agropecuario y sostenible de Arauca en el 2016. Por ende, se tiene en marcha la construcción de la planta agroindustrial en la vereda Corocito, municipio de Tame, que procesará aproximadamente 100 toneladas diarias de plátano y generará 280 empleos directos y más de 1500 empleos indirectos.

La comercialización significa el principal problema para el productor, debido a que el intermediario comercializa el 80 % de la producción y un 10% el mismo productor, el restante 10% en el mercado local. Esto genera a los productores un 20% menos de ingreso. A raíz de estos inconvenientes, se busca eliminar el intermediario, para valorar el trabajo de los campesinos, algunos buscan alternativas como llevar la materia prima a los Santanderes, Bogotá, Cúcuta o Yopal, pero los costos en fletes y combustible aumentan los costos de producción. Por tal motivo se incursiona en el mercado de la agroindustria.

También resaltar que la cadena productiva del plátano (*M. paradisiaca*) tiene otras bondades, como aprovechar los órganos de la planta, aparte del fruto, como el pseudotallo en alimentación animal o colorantes naturales para telas, el raquis; lixiviados, bellota;
alimentación humana (tortas), cascara; elaboración de harina etc., donde se mitigaran grandes desechos en las plantaciones y ayudando al medio ambiente. (SENA. 2007)

7. CONCLUSIONES

- La aplicación de alternativas del manejo agronómico, enfocadas a la reducción de aplicación de agroquímicos para control de plagas y enfermedades, beneficia directamente la calidad de vida de los agricultores, mejorando la rentabilidad del cultivo y haciendo una producción sustentable.

- El proyecto productivo en zona de origen permite la demostración y transferencia de alternativas a los agricultores logrando de esta manera aportar al mejoramiento de la producción la optimización de recursos y protección del medio ambiente y la salud humana.

- La implementación de las trampas es eficiente en cuanto, la agregación y captura del picudo negro (C. sordidus), son fáciles y económicas de realizar en campo, amigables con el medio ambiente, contribuyendo a reducir costos en la producción y rentabilidad del cultivo.
8. BIBLIOGRAFÍA

- Cayón (2004). Eco fisiología y productividad del plátano (Musa AAB Simmonds).
- Carvajal O (2009). Control del picudo del plátano Cosmopolites sordidus Germar (Coleóptera, Curculionidae) por el nematodo Heterorhabditis bacteriophora (Heterorhabditidae).
- Nieto D & Adarme W (2014). GUÍA TÉCNICA PARA ORIENTAR PROCESOS DE CERTIFICACIÓN EN BUENAS PRÁCTICAS AGRÍCOLAS (BPA) DESDE UN ENFOQUE LOGÍSTICO. “UNA OPORTUNIDAD HACIA LA COMPETITIVIDAD DEL EMPRESARIO RURAL DEL AGRO ARAUCANO”.
- Ramírez C, Vallejo L (s.f). Métodos de muestreo para evaluar poblaciones de picudos del plátano (coleóptera: curculionidae, dryophthorinae) en el departamento de Caldas-Colombia. Departamento de Fitotecnia, Facultad de Ciencias Agropecuarias, Universidad de Caldas.
9. ANEXOS

10.1 Fluctuación de las precipitaciones en la vereda Monte Adentro

En la gráfica 1, se puede apreciar las fluctuaciones mes a mes en la vereda Monte Adentro, municipio de Saravena y las inundaciones presentes.

Grafica 1: Fluctuación de las precipitaciones.

![Diálogo](image.png)

Fuente: Elaboración propia.

10.2 Control del gusano cogollero (*S. frugiperda*)

En la gráfica 2, se evidencia la infestación de la plaga y los controles integrales que se llevaron a cabo. En el mes de noviembre y diciembre se presentaron precipitaciones bajas, ver anexo 1 y figura 1, ya que el comportamiento de las plagas tiende a aumentar, como fue el caso de la (*S. frugiperda*).
El control de la sigatoka negra (*M. fijiensis*) se realizó entre labores culturales (deshoje, cirugía y la poda temprana). Acompañada de fungicidas protectantes y curativos para llevar un control equilibrado. Observar la gráfica 4, donde se aprecia mes a mes los manejos aplicados. Después del belloteo, se retiraron hojas que lo ameritan en compañía de la cirugía y aplicaciones de síntesis química.

Gráfica 2: Control del gusano cogollero

![Gráfica 2](image1)

Fuente: Elaboración propia.

Gráfica 4: Control de la sigatoka negra.

![Gráfica 4](image2)

Fuente: Elaboración propia.
10.4 Control de arvenses

Tabla 13. Control de arvenses en el cultivo de plátano.
Se observa el control de los arvenses durante las fases del cultivo de proyecto productivo.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Control utilizado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cultural-Mecánico</td>
</tr>
<tr>
<td>1</td>
<td>Plato</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Control mecánico</td>
</tr>
<tr>
<td>8</td>
<td>Control mecánico</td>
</tr>
<tr>
<td>10</td>
<td>Control mecánico</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

10.5. Comportamiento del precio del platano

En la grafica 6, se evidencia mes a mes la fluctuacion del precio de la fruta de interes comercial en el municipio de Saravena, vereda Monte Adentro. Donde el precio mas alto ha estado en un rango de 100.000 pesos y 200.000 pesos el bueno y el parejo entre 80.000 pesos a 100.000 pesos la carga.
Gráfica 6: Fluctuación del precio del plátano.

Fuente: Elaboración propia.

10.6 Flujo de caja del proyecto

En la gráfica 7, se aprecia el flujo de caja donde se observa los egresos e ingresos durante la ejecución del proyecto. El presupuesto total es de $ 9.993.600 pesos donde se invertido $ 8.745.000 pesos.

Gráfica 7: Flujo de caja

Fuente: Elaboración propia.
10.7 Costos directos e indirectos del proyecto

En la gráfica 8, se aprecia los costos directos e indirectos del proyecto productivo.

Gráfica 8: Costos directos e indirectos

![Gráfica de costos directos e indirectos]

Fuente: Elaboración propia

10.8 Curso de Buenas Prácticas Agrícolas (BPA)

A:
Julieth Rossana Rodríguez González
C.C. 1.116.737.739

CURSO TÉCNICO SOBRE IMPLEMENTACIÓN DE BUENAS PRÁCTICAS AGRÍCOLAS CON BASE EN LA RESOLUCIÓN 80021 DE 2017:
- “Ajustecimiento, manejos y uso de elementos de protección personal”,
- “Prácticas de Higiene”,
- “Primeros Auxilios” y
- “Plan de Emergencias y Contingencias”

Realizado los días 23, 24 y 25 de octubre de 2017, en las instalaciones de la Estación Experimental Santa Bárbara, Aracataca - Aracataca, mediante el auspicio de la Unidad Técnica Arauquita - Aracataca y el cuerpo de Bomberos Voluntarios del Municipio de Aracataca.
10.9 Curso de plátano – Fedepacol

Figura 1. Curso del manejo integrado del cultivo de plátano

![Certificado de curso](image1)

Componente social – envases de agroquímicos – Capacitaciones

Figura 2. Capacitación a los estudiantes del colegio Antonio Nariño

![Clase de capacitación](image2)
Figura 3. Encuesta a los estudiantes del colegio Antonio Nariño

Fuente: Elaboración propia.

Capacitación a agricultores (Vereda Monte Adentro)

Fuente: Elaboración propia.
Figura 4. Capacitación a los agricultores de la vereda Monte Adentro.

Fuente: Elaboración propia.

Registro fotográfico del componente agronómico

Figura 5. Labores culturales en el cultivo de plátano.

Fuente: Elaboración propia.
Figura 6. Drenajes en el cultivo de plátano

Figura 7. Cosecha y comercialización del producto en fresco.

Fuente: Elaboración propia.
Componente de investigación agrícola

Figura 8. Trampas para la captura del pícuo negro (*C. sordidus*).

Fuente: Elaboración propia.
Figura 9. Análisis de suelo

<table>
<thead>
<tr>
<th>CAMPO</th>
<th>INVERNADERO</th>
<th>No. Registro</th>
<th>MS-032</th>
</tr>
</thead>
<tbody>
<tr>
<td>USUARIO:</td>
<td>Julieth Rosana Rodríguez G.</td>
<td>FINCA:</td>
<td>El saman</td>
</tr>
<tr>
<td>DIRECCIÓN:</td>
<td></td>
<td>CULTIVO:</td>
<td>Plátano Hartón</td>
</tr>
<tr>
<td>DPTO:</td>
<td>Arauca</td>
<td>T. ANÁLISIS:</td>
<td>Suelo completo</td>
</tr>
<tr>
<td>MUNICIPIO:</td>
<td>Saravena</td>
<td>FECHA DE RECEPCIÓN:</td>
<td></td>
</tr>
<tr>
<td>TEL. / CORREO:</td>
<td>julietrodriguez952@unesalle.edu.co</td>
<td>FECHA DE RESULTADO:</td>
<td></td>
</tr>
</tbody>
</table>

RESULTADO

<table>
<thead>
<tr>
<th>TEXTURA</th>
<th>ARENA</th>
<th>% 37,38</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCILLA</td>
<td>% 35,83</td>
<td></td>
</tr>
<tr>
<td>LUMO</td>
<td>% 21,8</td>
<td></td>
</tr>
<tr>
<td>TIPO</td>
<td>Franco arcilloso</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>5,42</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E.</td>
<td>dS/m</td>
</tr>
<tr>
<td>C.I.C</td>
<td>meq/100g</td>
</tr>
<tr>
<td>C.E.C</td>
<td>meq/100g</td>
</tr>
<tr>
<td>M.O.</td>
<td>% 1,87</td>
</tr>
<tr>
<td>Rango A.</td>
<td>2,3 - 7,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATIONES DE CAMBIO</th>
<th>Rango Adecuado</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAICO</td>
<td>meq/100g</td>
</tr>
<tr>
<td>MAGNESIO</td>
<td>meq/100g</td>
</tr>
<tr>
<td>SODIO</td>
<td>meq/100g</td>
</tr>
<tr>
<td>POTASIO</td>
<td>meq/100g</td>
</tr>
<tr>
<td>Al</td>
<td>inter.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENTOS MENORES</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIERRO</td>
<td>235,64</td>
</tr>
<tr>
<td>Mn</td>
<td>47,27</td>
</tr>
<tr>
<td>COBRE</td>
<td>2,53</td>
</tr>
<tr>
<td>ZINC</td>
<td>3,94</td>
</tr>
<tr>
<td>BORO</td>
<td>0,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATURACION DE BASES</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac. Calcio</td>
<td>76,77</td>
</tr>
<tr>
<td>Sac. Magnesio</td>
<td>25,60</td>
</tr>
<tr>
<td>Sac. Sodio</td>
<td>1,07</td>
</tr>
<tr>
<td>Sac. Potasio</td>
<td>2,56</td>
</tr>
<tr>
<td>Sac. Aluminio</td>
<td>0,00</td>
</tr>
<tr>
<td>SBT</td>
<td>100,00</td>
</tr>
</tbody>
</table>

METODOLOGÍAS ANALÍTICAS

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>MÉTODO DE DETERMINACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXTURA</td>
<td>BOLÍTICOS</td>
</tr>
<tr>
<td>CARBONO ÓRGÁNICO</td>
<td>Walkley-Black</td>
</tr>
<tr>
<td>pH</td>
<td>Potenciométrico rel. 1:1</td>
</tr>
<tr>
<td>C.E. (dS/m)</td>
<td>Electrotermo método de saturación</td>
</tr>
<tr>
<td>C.I.C (meq/100g)</td>
<td>Valoración ácido base, Extracto con Acetato de Amonio</td>
</tr>
<tr>
<td>FOSFATO DISPONIBLE</td>
<td>Fosfato Monocalcico, Turbidimétrico</td>
</tr>
<tr>
<td>NITROGENO TOTAL</td>
<td>Uspialdi Modificado</td>
</tr>
<tr>
<td>AZUFRE</td>
<td>Extracto Fosfato Monocalcico, Turbidimétrico</td>
</tr>
<tr>
<td>K, Ca, Mg, Na</td>
<td>Extracto Acetato de Amonio, Absorción Atómica</td>
</tr>
<tr>
<td>AI DE INTERCAMBIO</td>
<td>Extracto con KCl 1N</td>
</tr>
<tr>
<td>Fe, Mn, Co, Zn</td>
<td>Extracto DTPA, Absorción Atómica</td>
</tr>
<tr>
<td>BORO</td>
<td>Extracto con agua caliente, Colorimétrico (Azometa-H)</td>
</tr>
<tr>
<td>Densidad Aparente</td>
<td>Anillo / Terrón parafinado</td>
</tr>
<tr>
<td>Densidad Real</td>
<td>Piconmetro</td>
</tr>
<tr>
<td>Estabilidad de agregados</td>
<td>Mezclador Yoder</td>
</tr>
<tr>
<td>Capacidad de campo</td>
<td>Mesa de tensión</td>
</tr>
</tbody>
</table>

ING. MIGUEL ÁNGEL CRUZ CORREA
TÉCNICO DE LABORATORIO

ING. RICARDO BUENO VUELVAS
DIRECTOR PROGRAMA INGENIERÍA AGRONÓMICA
Figura 10. Picudos por tratamiento

Fuente: Elaboración propia.

Figura 11. Trampas para picudo

Fuente: Elaboración propia.
Figura 12. Picudos vs precipitaciones

![Gráfico de línea mostrando el número de picudos y precipitaciones](image)

Fuente: Elaboración propia.

Figura 13. Listado de asistencia

![Imagen de la lista de asistencia](image)

Fuente: Elaboración propia.
Figura 14. Asistencia de los estudiantes del colegio Antonio Nariño.

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre y apellido</th>
<th>Número de cédula</th>
<th>Firma</th>
<th>Zona rural</th>
<th>Zona urbana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>José Pérez</td>
<td>123456789</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>María López</td>
<td>987654321</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Juan Martínez</td>
<td>456789012</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>清爽 García</td>
<td>210987654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ana Rodríguez</td>
<td>543210987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Daniel Casas</td>
<td>987654321</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Remedios Sánchez</td>
<td>876543210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Luisa García</td>
<td>456789012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rafael Rodríguez</td>
<td>210987654</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.