MODELO DE MEJORA DEL PROCESO DE MANTENIMIENTO PREVENTIVO DE ASCENSORES BASADO EN LA NORMA NTC5926-1

Autores
FABIO NELSON FRANCO OSORIO
JHON FREDY SANCHEZ MEJIA

Director
ARCADIO CERVERA

UNIVERSIDAD DE LASALLE
FACULTAD DE CIENCIAS ADMINISTRATIVAS Y CONTABLES
MAESTRÍA EN ADMINISTRACIÓN
Agradecimientos

Le damos gracias primero que todo a Dios por darnos la oportunidad de hacer este sueño realidad y por el apoyo y colaboración de muchas personas especiales, cuya buena disposición aportó un granito de arena en la realización de este trabajo. De corazón agradecemos a nuestras esposas, hijos, familiares y al Dr. Sander Alberto Rangel por el apoyo y orientación durante este proceso.
3.2.2 Descripción del formato: ...44
3.2.3 Guarda polea en cuarto de máquinas..44
3.2.4 Demarcación de cables de tracción, sentido de giro y breakers44
3.2.5 Stop en máquina de tracción..44
3.2.6 Protector de polea del limitador de velocidad..................................45
3.2.7 Acceso adecuado a cuarto de máquinas..45
3.2.8 Iluminación de cuarto de máquinas..45
3.2.9 Protección de circuitos en control..45
3.2.10 Corral en techo de cabina..45
3.2.11 Control de inspección/Normal TOCI...46
3.2.12 Intercomunicador...46
3.2.13 Luz y alarma de emergencia...46
3.2.14 Fascia o faldón ...46
3.2.15 Sensor de carga...46
3.2.16 Micro de amortiguadores en cabina y contrapeso............................47
3.2.17 Micro switch de pesa del regulador ..47
3.2.18 Escalera de acceso a foso...47
3.2.19 Stop de foso ...47

3.3 PROCEDIMIENTO PARA EL TRABAJO DE CAMPO..........................48

3.4 DESCRIPCIÓN Y ANALISIS PARA DETERMINAR LAS NECESIDADES DE MEJORAR LOS PROCEDIMIENTOS DE MANTENIMIENTO PREVENTIVO BASADO EN LA NORMA NTC 5926-1 ...50
3.4.1 Descripción de la empresa...50
3.4.2 Venta: ...50
3.4.3 Instalación: ..50
3.4.4 Modernización: ...50
3.4.5 Mantenimiento: ..51
3.4.6 Mantenimiento preventivo..51
3.4.7 Mantenimiento correctivo ..51

3.5 ANÁLISIS DE LAS CONDICIONES ACTUALES DE LOS ASCENSORES. 51
3.5.1 Protección de guarda polea tractora: ..53
3.5.2 Instalación de micro eléctrico en limitador de velocidad: .. 53
3.5.3 Corralillo en tocho de cabina: .. 54
3.5.4 Escalera de foso: .. 55
3.5.5 Citofonía: ... 56
3.5.6 Luz y alarma en cabina: .. 56
3.5.7 Sensor de carga: .. 57
3.5.8 Stop en máquina: .. 58
3.5.9 Demarcación de cables de tracción: ... 58

4 MODELO DE MEJORA PROCESO DE MANTENIMIENTO PREVENTIVO BASADO EN LA
NORMA NTC5926-1... 62

4.1 MÁQUINA TRACTORA ... 64
4.2 ELEVADORES ROOMLESS O SIN CUARTO DE MÁQUINAS .. 66
4.3 CABLES DE TRACCIÓN Y SUS AMARRES .. 66
4.4 CONTRAPESO .. 67
4.5 CIRCUITOS ELÉCTRICOS DE SEGURIDAD (RECORRIDO POZO) 68
4.6 HUECO DEL ASCENSOR ... 68
4.7 SEÑALIZACIÓN Y MANIOBRA DE LOS ELEMENTOS QUE AFECTEN LA SEGURIDAD 69
4.8 CIRCUITOS ELÉCTRICOS DE SEGURIDAD (EN CABINA) .. 69
4.9 CABINA Y ACCESO A LA MISMA ... 70
4.10 MANTENIMIENTO, IDENTIFICACIÓN Y RÓTULOS .. 71

5. ANÁLISIS DE COSTOS ... 94
5.1 Costos de mano de obra ... 94
5.2 Costo de capacitación ... 94
5.3 Beneficios .. 95

6. CONCLUSIONES ... 96
7. REFERENCIAS .. 98
Listado de tablas

Tabla 1 Grupos de subsistemas para la inspección de los ascensores .. 29
Tabla 2 Tecnologías ascensores evaluados. .. 31
Tabla 3 Formato de Inspección de ascensores ... 42
Tabla 4 Formato de reporte de trabajos para ascensores ... 43
Tabla 5 Stop en foso ... 52
Tabla 6 Limitador de velocidad ... 54
Tabla 7 Corralillo .. 54
Tabla 8 Escalera .. 55
Tabla 9 Citofonía ... 56
Tabla 10 Luz y alarma de emergencia ... 57
Tabla 11 Sensor de carga .. 57
Tabla 12 Stop de máquina ... 58
Tabla 13 Marcación de cables .. 59
Tabla 14 Condiciones actuales de los ascensores de acuerdo a la norma 5926-1 60
Tabla 15 Máquina Tractora. ... 74
Tabla 16 Cuarto de máquinas y poleas ... 76
Tabla 17 Paracaídas y limitador de velocidad .. 78
Tabla 18 Ascensores sin cuarto de máquinas (ROOMLESS) ... 80
Tabla 19 Contrapeso ... 82
Tabla 20 Circuitos eléctricos de pozo y foso ... 84
Tabla 21 Puertas de hall ... 87
Tabla 22 Cabina .. 90
Tabla 23 Costo mano de obra mensual ... 94
Tabla 24 Horas de capacitación ... 95
LISTA DE FIGURAS

Figura 1 Modelo general de las 5´s. ... 20
Figura 2 Benchmark metodologías de mejora ¡Error! Marcador no definido.
Figura 3 Partes principales del ascensor .. 32
Figura 4 Máquina de tracción ... 33
Figura 5 Control de operación .. 34
Figura 6 Cabina del ascensor vista desde el techo. .. 35
Figura 7 Foso del ascensor .. 36
Figura 8 Porcentaje de cumplimiento de stop en foso 52
Figura 9 Porcentaje de cumplimiento para polea protegida. 53
Figura 10 Porcentaje de cumplimiento en limitador de velocidad 54
Figura 11 Porcentaje de cumplimiento corralillo en techo de cabina................ 54
Figura 12 Porcentaje de cumplimiento en escalera de acceso a foso 55
Figura 13 Porcentaje de cumplimiento de citofonía 56
Figura 14 Porcentaje de cumplimiento de luz y alarma de emergencia 57
Figura 15 Porcentaje de cumplimiento de sensor de carga. 57
Figura 16 Porcentaje de cumplimiento de stop de máquina 58
Figura 17 Porcentaje de cumplimiento en demarcación de cables 59
Figura 18. Figura 18 Modelo de mejora. .. 63
RESUMEN

La constante necesidad de mejorar procesos, mantenerse a la vanguardia de los adelantos tecnológicos y ser competitivos en un entorno altamente dinámico y globalizado conlleva a la búsqueda permanente de nuevos métodos y procesos para suplir dichas necesidades. Del mismo modo ceñirse a la normatividad existente e invertir en investigación, innovación y desarrollo fortalece la competitividad de las empresas y crea mayores oportunidades de crecimiento lo cual trae consigo importantes beneficios para la industria y el país.

Al respecto es importante considerar que en el sector del transporte vertical en Colombia existen grandes oportunidades de mejora en diferentes procesos, en especial en el enfoque actual que tienen las actividades de mantenimiento preventivo. Es por tanto necesario analizar diferentes aspectos que contribuyan a la mejora del proceso de mantenimiento preventivo de los ascensores y adoptar procedimientos encaminados a dar cumplimiento a la norma NTC 5926-1 que rige el transporte vertical en Colombia, además el mantenimiento es considerado un elemento fundamental para tener un excelente funcionamiento de los elevadores, mejorar la calidad del servicio, la seguridad y lograr satisfacción del cliente.

El estudio aquí presentado fue realizado en la ciudad de Bogotá en las localidades de chapinero y Chico, entre la calle 45 y la calle 116 en edificios con elevadores de uso residencial, comercial y público, abarcando una gama de tecnologías entre equipos de 60 años de antigüedad y equipos instalados en el año 2016 en los cuales se han aplicado procedimientos de mantenimiento enfocados hacia la funcionalidad de los equipos, en esta propuesta se presenta un enfoque de mantenimiento de elevadores hacia la seguridad y el cumplimiento de la norma NTC 5926-1 haciendo uso de la teoría de mejora continua.
1. ASPECTOS PRELIMINARES

1.1 PROBLEMA DE INVESTIGACIÓN

1.1.1 Descripción

La competitividad de las empresas está marcada principalmente por la optimización de los procesos, el nivel de innovación y análisis del entorno, además el mejoramiento continuo en las organizaciones es de suma importancia puesto que al encontrarse en un entorno altamente dinámico es necesario estar en la búsqueda permanente de nuevos métodos y herramientas que permitan mayor calidad y seguridad al usuario final, y brindar soluciones integrales para un mercado cada vez más informado y exigente.

Teniendo en cuenta lo anterior, en la industria del transporte vertical la seguridad de los usuarios es un aspecto que ha tomado mayor importancia en los últimos años, múltiples desarrollos enfocados hacia la seguridad tienen acogida inmediata ya que se ha tomado mayor conciencia de que en la prevención se encuentra la clave del éxito para reducir accidentes y de mejorar los estándares de seguridad, como ejemplo de ello la industria automovilística cada vez ofrece productos más seguros con el aprovechamiento de la tecnología y los avances en materia de investigación. (ÁLVAREZ, 2002).

Por su parte el sector de la construcción también ha tenido importantes avances con el desarrollo de estándares, normas y procedimientos que facilitan la realización de los trabajos y reducen costos al tener menos accidentes graves o fatales, los cuales afectan en gran medida las organizaciones, pues es obligación del trabajador brindar condiciones seguras de trabajo, capacitar al personal para el adecuado desarrollo de sus labores y en general trabajar en el bienestar de sus empleados, (Código sustantivo del trabajo, 2016) artículo 57. En consecuencia, al tener menos accidentes las empresas
son más productivas y pueden prevenir inconvenientes relacionados con indemnizaciones o demandas que podrían llevar una empresa a la quiebra, pues tienen responsabilidades de tipo administrativo, penal, civil y de seguridad social (Collado, 2008) pg. 112.

La legislación colombiana ha tenido un avance lento en aspectos de seguridad industrial para el trabajo en alturas, solo hasta el año 2009 el ministerio del trabajo creó la resolución 3673 (Mintrabajo, 2009), para regular el trabajo en alturas, como plan de acción para reducir el alto índice de accidentalidad ya que para la época era una de las principales causas de muerte en el trabajo, sin embargo esta resolución presentaba grandes vacíos en definiciones y vigencia de las certificaciones; en este sentido, en el 2012 el ministerio de trabajo dictó la resolución 1409 “por el cual se establece el reglamento de seguridad para protección contra caídas en trabajo en alturas”, (mintrabajo, 2012), mucho más completa y de obligatorio cumplimiento para todas aquellas personas que por las actividades que desempeñan se les considera que trabajan en alturas.

Posterior a esto y tomando bases comunes, en el año 2014 la alcaldía mayor de Bogotá creó la norma NTC 5926-1 (ICONTEC, 2014), la cual fue diseñada con el objeto de comprobar las condiciones de seguridad de los ascensores instalados en los edificios de la ciudad de Bogotá, implementando una serie de auditorías e inspecciones para establecer defectos en los equipos, los cuales al adaptarse a la norma aumentan el nivel de seguridad y confianza de los usuarios, estas inspecciones son realizadas anualmente por compañías certificadas por el organismo nacional de acreditación de Colombia ONAC.

En Colombia la industria de los ascensores ofrece servicios de mantenimiento preventivo, y correctivo buscando garantizar el correcto funcionamiento de los equipos, con rigurosos parámetros de seguridad para brindar a los clientes un servicio confiable y oportuno, sin embargo el avance tecnológico, la necesidad de optimizar procesos y conservar la rentabilidad del negocio, hace necesario que se replanteen los procedimientos utilizados para la realización de muchas actividades que continúan ejecutándose de manera tradicional, en especial la elevada cantidad de horas requeridas para dichas labores, no obstante la administración distrital de la ciudad de Bogotá evidenció en 26 visitas de verificación que las localidades con mayor número de incidentes son Usaquén, Chapinero y Santafé en los años 2013 y 2014, (ELESPECTADOR.COM, 2014).
Es por tanto imperativo hacer un revisión de estos procesos y plantear alternativas en el desarrollo de las actividades de mantenimiento que se ejecutan mensualmente en los ascensores en Bogotá, tomando como base la NTC 5926-1 para direccionar los procedimientos hacia el cumplimiento de ésta, además en esta industria existe un amplio campo de acción para la optimización de los procesos administrativos y operativos.

1.1.2 Formulación
Es por tanto imperativo hacer una revisión de estos procesos y plantear alternativas que resuelvan el siguiente interrogante: ¿Cuáles aspectos de la norma NTC 5926-1 pueden ser incluidos en el desarrollo de las actividades de mantenimiento que se ejecutan mensualmente en los ascensores en Bogotá? Y Cómo la teoría de administración de mejora continua puede brindar herramientas para el diseño de un modelo de mejora del proceso de mantenimiento preventivo de ascensores enfocado hacia el cumplimiento de la norma.

1.2 OBJETIVOS
1.2.1 General

Diseñar un modelo de mejoramiento para una empresa dedicada al mantenimiento de ascensores basado en la norma NTC 5926-1.

1.2.2 Objetivos Específicos

- Analizar la literatura relacionada con la mejora continua y la normatividad del transporte vertical existente.
- Realizar un diagnóstico para determinar las necesidades de mejora de los procedimientos de mantenimiento preventivo basado en la norma NTC 5926-1.
- Proponer un modelo de mejora en el proceso de mantenimiento preventivo basado en la norma NTC5926-1.
1.3. JUSTIFICACIÓN Y DELIMITACIÓN

Este proyecto de investigación fue realizado con el objetivo de contribuir a la industria del transporte vertical en Colombia hacia la mejora los procesos actuales de mantenimiento, dándole un direccionamiento en el marco legal existente y con ello mejorar la seguridad y la confiabilidad de los usuarios, tomando como base los parámetros estipulados en la norma NTC 5926-1 (ICONTEC, 2014), además profundizar en metodologías de mejora continua para que dichos procesos tengan mayor eficiencia, y servir de soporte para futuros estudios relacionados con la mejora continua y la sostenibilidad empresarial, puesto que en la industria cada vez se hace necesario la optimización de recursos como lo afirma Alfaya y Blasco (2004), por lo tanto los procesos deben orientarse al cumplimiento de objetivos económicos ambientales y sociales.

También es importante para las organizaciones mantener constante evaluación de los procesos que contribuyen a generar valor, analizando su comportamiento frente a su historia y al sector al que pertenecen lo cual contribuye a mejorar la competitividad, esto según Martínez et al. (2010) está determinada por fuentes externas y fuentes internas cuyos efectos tienen un carácter aditivo, de tal manera que se fortalezca en el sentido que se evalúen el mayor número de variables de cada fuente.

En este orden, es necesario evaluar todos aquellos factores que intervienen en los procesos de mejoramiento y seguridad de los elevadores, involucrando las personas de todos los departamentos para que dichos objetivos se lleven a cabo con éxito, como lo expresa García et al. (2003, p. 89), “una organización o cualquier parte de ella, proporciona una serie de servicios (o productos) que consume un cliente (interno o externo)…”, para la entrega de dicho producto las organizaciones ejecutan un proceso el cual debe seguir un ciclo de revisión y mejoramiento permanente. Mediante el nuevo enfoque del proceso de mantenimiento que se propone en este estudio, su busca obtener beneficios para los grupos de interés que interactúan con esta industria, de este modo los clientes y usuarios pueden contar con elevadores más seguros y con alto cumplimiento de los estándares exigidos en la NTC5926-1, por su parte las empresas prestadoras del servicio de mantenimiento pueden crear oportunidades de negocio al llevar a sus clientes propuestas de adecuaciones e implementación de nuevos sistemas para los equipos que por su tecnología no cumplen con la mayoría de los parámetros de seguridad requeridos, y finalmente las empresas
certificadoras tendrán inspecciones exitosas y de cumplimiento 100% ya que los equipos estarán preparados para cumplir con la certificación, de esta manera el proceso de certificación puede ser más eficiente al no requerir segunda visita para el cierre total de los hallazgos.
2. MARCO DE REFERENCIA

2.1 MARCO TEÓRICO

2.1.1 Metodologías De Mejora Continua

La existencia de normatividad en el sector transporte vertical contribuye a la optimización y el desarrollo de nuevos procesos que conllevan al mejoramiento continuo, enfocándose en altos estándares de seguridad y de calidad para brindar un producto final que sea competitivo y posea valor agregado hacia el cliente o usuario final. En el presente trabajo se abordan algunas metodologías que se consideran pertinentes para la elaboración del modelo a desarrollar.

En la industria de los elevadores a pesar de existir un amplio número de empresas en este sector, son pocas las empresas con un sistema de gestión de calidad implementado y certificación vigente. Las compañías líderes en el mercado nacional cuentan con certificación ISO-9001 vigente, esto ha llevado la industria del transporte vertical a mejorar sus procesos y tener beneficios para los clientes, esforzándose por llevar un mejor servicio y tener mayor calidad en sus productos manteniendo un crecimiento constante y a mantener altos niveles de calidad en sus productos.

La implementación de los sistemas de mejora continua ha tomado mayor fuerza en el sector empresarial en las últimas décadas, diferentes autores han profundizado en el tema y aportado algunas definiciones del concepto de mejora continua, sin embargo de acuerdo con (deloitte.com, 2014) aunque se han hecho esfuerzos por avanzar en la implementación de estos procesos, la tasa de éxito es menor al 60 %, exponiendo como el factor más importante para lograr un cambio significativo la forma como las empresas gestionan y ejecutan el trabajo, además se habla de 5 preceptos que pueden ayudar a implementar eficazmente un proceso de mejora continua en una organización.

En primer lugar se habla del liderazgo persistente en el que los líderes deben asegurarse de mantener la visión original y hacer uso de la información disponible para tomar rápidas decisiones, en segundo lugar se encuentra la gestión del cabio real, se refiere a estar atento a las variaciones del entorno y mantener expectativas realistas, y poder medir los niveles de preparación y voluntad del
equipo de personas que intervienen en el proceso de mejora, en tercer lugar esta administrar lo que se mide, las empresas deben seguir el proceso de definir qué medir, y deben priorizar qué mejorar, allí se encuentra la habilidad de rescatar la información verdaderamente valiosa y eliminar el ruido, en cuarto lugar recomiendan dejar que los datos guíen el camino, establecer una cultura de decisiones basada en datos para identificar objetivamente como mejorar, y por último hacer pequeñas cosas mejor, en este apartado se habla de la posibilidad de verse inundado de oportunidades de mejora al experimentar algún éxito inicial, entonces los autores recomiendan ir enfocando los esfuerzos de mejora de manera gradual seleccionando las prioridades que agreguen valor a la organización.

Aguilar y Morales (2010) se refiere al hecho que nada puede considerarse como terminado en forma definitiva y así como todo se encuentra en cambio permanente conlleva a la oportunidad de mejora permanente, por su parte Suarez et al. (2009) define la mejora continua como el Kaizen que es considerado el “elemento perdido” del éxito operacional de las empresas japonesas, para Espinoza y Hejduk (2010) cuando se desea aplicar mejora continua es necesario comprender que al implementar un modelo de trabajo productivo implica un cambio de cultura, es decir cambio de hábitos y prácticas de trabajo, pero también el estilo de administrar de la alta gerencia es muy importante para el éxito en la implementación de un modelo operativo eficaz.

Además cabe resaltar que en la actual sociedad del conocimiento, ha tomado cada vez más fuerza el hecho de que la información debe hacerse presente en el momento justo en el que se necesita, para ser aplicado en el contexto adecuado, de la manera correcta, por cualquier persona que lo requiera, y que sea oportuno en la toma de decisiones y en todo el proceso administrativo (Capote et al. 2009).

Por su parte Rodriguez (2005, p.10), expresa que “el establecimiento de modelos integrales de gestión del conocimiento en las entidades locales debe servir para demostrar cómo los activos intangibles determinan la mejora de la calidad del servicio” y contribuye a obtener resultados excelentes en la gestión, además que generan valor en la organización ya que están relacionados de una u otra forma con las acciones y procesos de manipulación de conocimiento es decir la recolección, organización y transmisión de conocimiento, que a su vez fortalece la empresa y
genera ventajas competitivas ya que siempre se está buscando la forma de hacer mejor cada etapa del proceso.

Una postura que ayuda a complementar la importancia de la mejora continua es expuesta por Suárez Barraza (2008) refiriéndose a que existe un grupo de actividades evolutivas y actividades de mejora que surgen cuando se aplica mejora continua en los procesos y cada etapa es acompañada por elementos básicos potenciadores e inhibidores, por tanto es necesario tratar cada elemento de manera que se fortalezcan los que potencializan la mejora y se reduzcan los elementos que limitan el proceso.

En la búsqueda constante de alternativas de mejora, se han creado normas y certificaciones dirigidas hacia la mejora de los procesos y gestión de calidad, algunas de estas hacen parte de las diferentes metodologías formalizadas que existen para aplicar mejora continua en las organizaciones, como lo son ISO-9000, TQM, Six Sigma, Kaizen entre otros.

La serie de normas ISO-9000 están direccionadas hacia la gestión de calidad, de manera que ha tenido gran influencia en el mejoramiento de los procesos empresariales ya que muchas compañías al buscar la certificación en sus productos, implementan sistemas de gestión de calidad los cuales al estandarizar ayudan a inhibir las pérdidas, es decir ahorrar, además un proceso estándar, genera un producto conforme el cual puede competir fácilmente en el mercado, esto permite que aun variables no deseadas como la rotación de personal influya en el deterioro de la empresa conduciendo a la insatisfacción del cliente.

Esto trae consigo el fortalecimiento en la sostenibilidad de los procesos de cara al futuro y por ende beneficio para la empresa, sin embargo de acuerdo con Bohórquez (2010) los países desarrollados implementan sistemas de gestión para realmente obtener mejora continua en sus procesos, mientras que en países como Colombia la certificación ISO 9001:2000 es vista como el fin y no como el medio para promover la mejora.

De acuerdo con Mansir y Schacht (1989) El gerenciamiento con calidad total TQM (Total Quality management) no es un destino o un objetivo, es el recorrido es decir un camino y una forma de vida
en la que se está mejorando continuamente, esto tendrá grandes efectos en cada individuo y repercute positivamente en la organización, la calidad total es también una decisión propia de manera que cada persona se compromete en hacer mejor su trabajo, fijándose en los detalles, reconociendo sus debilidades y aprovechando las oportunidades de mejora en cada etapa de sus labores.

Al respecto Lloret (1995), explica que al aplicar un modelo de gerenciamiento de calidad total, se obtiene una estructura que permite la gestión integral de todas las herramientas necesarias para alcanzar la mejora en la organización. Según Lakhe (1993) TQM se define como la búsqueda continua de la excelencia mediante el fortalecimiento de habilidades y actitudes en las personas que generen satisfacción total en los clientes y en todo momento, involucra a todos los individuos de la organización y todas las actividades llevadas a cabo son enfocadas hacia el cumplimiento de los requisitos de los clientes con eficiencia y efectividad, además Lakhe (1993), plantea algunas limitantes en la implementación de TQM como la cultura de los países subdesarrollados, la falta de experiencia e instalaciones inadecuadas de manera que en este contexto el compromiso y seguimiento gerencial es fundamental para llevar a feliz término la aplicación de TQM en una organización.

La metodología Lean Six Sigma integra otras metodologías y filosofías de mejora continua como TQM, TPM, 5´S, Kaizen Y Lean, utilizados en diferentes modelos de administración de empresas, Lean significa hacer más con menos, es una filosofía que comenzó en Toyota implementada por Taiichi Ohno y Eiji Toyota quienes forzados por la escasez que dejó la segunda guerra mundial, exigen a sus trabajadores eliminar todos los residuos, entendiéndose residuos por materiales, partes, espacio y tiempo Pepper y Spedding (2009), y así concentrarse en las etapas que generan valor a la empresa, Lean está enfocado hacia la productividad, donde se abandona el pensamiento tradicional en el cual para tener mayor utilidad se debe subir el precio, con la filosofía Lean en vez de subir el precio se reduce el costo, esto se logra optimizando los 7 factores de desperdicio descritos por Pepper y Spedding (2009), estos son: 1) exceso de producción, 2) los defectos, 3) inventario innecesario, 4) tratamiento inapropiado, 5) Transporte excesivo, 6) espera y 7) movimientos innecesarios; con ello se obtiene entonces mayor productividad, satisfacción del cliente, calidad y flujo de caja.
Al respecto, Skalle y Hahn (2013) expresan que al eliminar todo aquello que no añade valor a la actividad aumenta la capacidad de la organización y libera recursos y presupuestos para nuevas inversiones o sacar adelante proyectos atrasados.

SIX SIGMA es una metodología de medición, control, estandarización y corrección basada en la filosofía Lean, usa técnicas de control estadístico de procesos en el cual la meta es llegar a un máximo de 3,4 defectos por millón de oportunidades (Brady y Allen, 2006) citado por Pepper y Spedding (2009).

LEAN SIX SIGMA integra diferentes herramientas de otras filosofías de mejora, aplica la estrategia de Hoshin Kanri, la estructura y mediciones de Kaizen y cadenas de valor, además enfatiza en minimizar tiempos de ciclo haciendo preparaciones rápidas y trabajo celular, para finalmente maximizar calidad y efectividad.

Al integrar LEAN y SIX SIGMA Pepper y Spedding (2009), concluye que se generan estrategias sistémicas y organizadas que proporcionan un enfoque coherente y holístico a la mejora continua.

La metodología Kaizen parte del término utilizado por Masaki Imai en los años 80, el cual es una composición de los ideogramas japoneses Kata = cambio, y Zen = bueno (para mejorar) Suarez et al. (2009), en el que se define la mejora continua como un elemento de la organización en el que participan todos, en todo momento, todos los días y en todas las tareas, y esto impacta directamente en la mejora de los procesos de trabajo dado que los sistemas de mejora se basan en la participación de las personas, Jaca et al. (2009), además sirve para aumentar la motivación de los trabajadores y anima el trabajo en equipo enseñando a los integrantes a hacer sus tareas en forma sistemática y ordenada, Para Conesa, (2007).

La implementación de Kaizen según Aoki (2008), citado por Suarez et al. (2009), en países con cultura diferente a la japonesa, requiere que se adopte los principios básicos del Kaizen donde la propia iniciativa de cada individuo para buscar la mejora es fundamental, así como la comunicación efectiva entre departamentos y la disciplina, de manera que se reduzca el (muda) o desperdicio. En este mismo orden, de acuerdo con Suarez-Barraga y Miguel-Dávila (2011), para aplicar esta metodología es necesario un análisis teórico previo que permita comprender el concepto
lo mejor posible y así implementarlo de manera efectiva. Por su parte Atehortua y Restrepo (2010) concluyen que para implementar la metodología Kaizen es necesario capacitar constantemente a las personas involucradas y estimular habilidades de liderazgo que contribuyan a percibir con mayor claridad los beneficios del Kaizen.

2.1.2 Metodología 5´S

5´s es una técnica de calidad desarrollada e implementada por Toyota en los años 60, enfocada al mejoramiento continuo, ofrece un modelo cíclico en el cual constantemente se revisan las actividades ejecutadas previamente obteniendo como resultado una mejora en el trabajo realizado, está basado en el orden, la limpieza y la creación de hábitos para implantar métodos de productividad en los lugares de trabajo (ICESI, 2010), esta técnica comparte la filosofía de Kaizen en cuanto a eliminar el desperdicio y aprovechar al máximo los recursos al hacer énfasis en el orden y la disciplina, otros beneficios de 5´s son facilitar el acceso y retorno de artículos y herramientas, promover la estandarización de actividades y en general tener un mayor control en área de trabajo.

El objetivo principal cuando se implementa 5´s es organizar el trabajo en 5 etapas que van generando cambios en el proceso de manera que cada etapa se fundamenta en la anterior para aprovechar al máximo los beneficios de esta metodología y lograr su permanencia a largo plazo para crear trabajos más productivos y ambientes de trabajo más agradables, el nombre las 5´s proviene de los ideogramas japoneses cuyas palabras comienzan con “S” ellas son Seiri, Seiton, Seiso, Seiketsu y sitsuke, en la figura 1 se muestra el modelo general de 5´s y la traducción correspondiente de cada etapa del modelo.
De acuerdo a al documento publicado por (prevencionar.com, 2016), a continuación se describe cada una de las 5S’ elementos del Kaizen que serán utilizadas en el desarrollo del procedimiento ya que se ajustan al proceso de mantenimiento preventivo de ascensores y al sustentarse en la estandarización de procesos es concurrente con la norma NTC 5926-1.

a. **Seleccionar (Seiri)**

Es el primer paso y consiste en diferenciar, dentro de un proceso productivo, los elementos necesarios de aquellos que no los son, diferenciando la frecuencia de uso y la utilidad, con ello se podrá obtener más espacio y mejor sensación de desorden, a su vez mayor seguridad, además
aprovechar los materiales de valor que no son necesarios ya sea trasladándolos a otros departamentos, en donaciones o poniéndolos en venta.

b. Ordenar (Seiton)

Consiste en elaborar un listado de todos los elementos identificados en el paso anterior, con el objetivo de organizarlos y/o estructurarlos, de manera que su localización sea más sencilla, estandarizar un lugar para cada cosa y cada cosa en su lugar, está directamente relacionado con objetos y partes contribuye a tener mayor ergonomía en las actividades.

c. Limpiar (Seiso)

Es el punto más importante, en él se identificará el problema, es decir, que es lo que hace innecesario a ese elemento dentro del proceso productivo, y se le pondrá solución, eliminar zonas de acumulación de materiales innecesarios, contribuye a alargar la vida útil de los equipos e instalaciones, esto conlleva a hacer más seguras las áreas de trabajo y tener un ambiente más saludable.

d. Estandarizar (Seiketsu)

En esta fase se busca estandarizar los resultados obtenidos en las tres fases anteriores. Consistirá fundamentalmente en acciones de mantenimiento de las mejoras obtenidas, transformándolas en permanentes, ayuda a distinguir en forma evidente lo anormal de lo normal al tener áreas, objetos y herramientas señalizadas, esto ayuda a efectuar tareas rápidamente y con mayor seguridad lo cual genera sensación de bienestar en el trabajo y a su vez la salud de las personas.

e. Mantener (Shitsuke)

Consiste en promover la mejora continua y fomentar el compromiso con las cinco S, es decir, convertir en hábito el empleo y utilización de los métodos establecidos y estandarizados, además contribuye a afianzar los nuevos hábitos y trabajar con disciplina, es uno de los conceptos más importantes ya que se refiere al seguimiento y auditoria 5´S mediante listas de chequeo, también
contribuye al fomento de trabajo en equipo y en general a tener una actitud mental positiva. (educadictos.com, 2014).

2.1.3 Ventajas de 5´S

Requiere capacitación parcial.
No requiere expertos.
Pasar rápidamente de la teoría a la práctica.
Mejora la productividad.
Reduce los accidentes.
Mejora la imagen ante los clientes.
Incrementa la seguridad y la higiene.
Alta compatibilidad con procesos de mantenimiento.
Posee conceptos sencillos y fáciles de asimilar por las personas.

De acuerdo con (UPDEC, 2013) la implementación de metodologías de mejora continua en organizaciones no necesariamente debe convertirse en un proceso complejo y tedioso pues al retomar conceptos tan simples como los propuestos en las 5´s se tiene un punto de partida sencillo que además puede ser aplicado en cualquier tipo de organización y cualquier sector de la industria o servicios, también va creando una cultura de disciplina en el camino a la implementación de la mejora continua.

Con la implementación de esta herramienta se desea dar un aporte de un modelo para lograr mejorar el proceso de mantenimiento en ascensores y obtener beneficios a nivel empresarial tomando como base la normatividad existente al respecto, la organización geográfica de las áreas de trabajo y la aplicación del enfoque holístico para analizar los factores que pueden influir en lograr mayor calidad y seguridad en la prestación del servicio, e identificar las opciones de mejora para reducir la tasa de cancelación de los contratos activos manteniendo buena relación comercial con los clientes. En la figura 2 se realiza un análisis benchmarking con el fin de explicar cómo se llegó a la elección de la metodología de mejora que será aplicada en el modelo.
La metodología 5'S es seleccionada para el desarrollo de este proyecto ya que presenta alto nivel de ajuste a los procesos críticos y en especial debido a que sus elementos están estrechamente relacionados con la norma NTC5926-1, adicionalmente su implementación es sencilla y está soportada en la disciplina el cual es considerado un factor de alta importancia en el modelo propuesto.

Fuente: elaboración propia.
Teniendo en cuenta el análisis previo de las metodologías de mejora continua, el desarrollo del modelo de mejoramiento propuesto en esta investigación hará uso de la técnica de las 5´s, ya que en primer lugar se apoya en elementos operativos (clasificación, organización y limpieza) y elementos de estandarización (mantenimiento, disciplina y estandarización), elementos fuertemente ligados a la norma NTC 5926 -1, puesto que están basados en la seguridad y la higiene, permitiendo diseñar el procedimiento de mantenimiento de ascensores enfocado hacia el cumplimiento de la norma y la mejora continua del proceso, además al tener conceptos elementales de mantenimiento como el orden la limpieza y la disciplina, resulta en un componente idóneo para aplicarlo en el modelo propuesto, aprovechando los beneficios que ofrece la implementación de esta herramienta.

2.2 MARCO NORMATIVO

El sector del transporte vertical en Colombia ha evolucionado de forma paralela con el sector de la construcción y es un negocio que para el año 2014 movía $300.000 millones de pesos (En-obra.com, 2015), sin incluir los contratos de mantenimiento que debe tener cada edificio donde hay ascensores instalados.

A través de los años los productos, métodos y procesos han venido mejorando tanto en su parte estética como en su parte funcional, pasando de tener motores de corriente directa a motores de corriente alterna cuyo consumo de energía es inferior (En-obra.com, 2015), y a partir del año 2005 se dio inicio a la importación hacia Colombia de ascensores con motores de imán permanente de un tamaño mucho menor y con controles y variadores de velocidad regenerativos que optimizan considerablemente el ahorro de energía hasta llegar inclusive a devolver la energía que no usan a la red de alimentación (fenercom.com, 2013).

Se espera que el crecimiento en este sector continúe siendo positivo ya que al estar ligado al crecimiento del sector de la construcción, este se ha mantenido sobre el 9% llegando a instalar más de 6000 ascensores en Colombia en el año 2014 (Revista del ascensor, 2015), se estima un parque aproximado de elevadores en Colombia de 45000 equipos de los cuales el 80% lo conforman ascensores para pasajeros (Portafolio.co, 2013), este mercado se mueve en tres
grandes frentes, el Americano, el Europeo y el Asiático, el mercado Americano con la empresa Otis, el Europeo con las empresas Thyssen, Shindler y kone y el asiático con Mitsubishi, (En-obra.com, 2015).

Los procesos que se siguen en este tipo de empresas dedicadas al transporte vertical se rigen por la siguiente normatividad que vela por la seguridad y la integridad de usuarios:

2.2.1 Norma Técnica Colombiana NTC 5926-1. Para Ascensores electromecánicos e hidráulicos.

Esta norma surge a partir de una serie de accidentes que se han presentado en ascensores y escaleras mecánicas en los últimos años, sin embargo se consideraban poco relevantes por tratarse de casos aislados, acuerdo con (El tiempo.com, 2015) entre enero de 2014 y julio de 2015 el cuerpo oficial de bomberos de Bogotá registró 286 emergencias con personas atrapadas en elevadores, de las cuales el 55% corresponden a fallas mecánicas, el 17% por falta de mantenimiento y el restante por falla en el fluido eléctrico; como casos notables se habla de un accidente en la ciudad de Barranquilla el 12 de agosto de 2015 en el cual 7 personas resultaron heridas cuando el ascensor presento fallas por sobre cupo, pues este estaba diseñado para 4 personas, en Bogotá, el 18 de mayo de 2015 un ascensor con 9 mujeres embarazadas se descolgó varios metros y las personas quedaron atrapadas, (El tiempo.com, 2015), sucesos como estos ya se venían presentado en años anteriores y teniendo en cuenta que cerca del 70% de los predios que hay en la ciudad de Bogotá son propiedad horizontal, según el censo inmobiliario de la Unidad Administrativa Especial de Catastro Distrital, el concejo expidió el acuerdo 470 de 2011 donde establece la normatividad en mención, posteriormente en 2014 se expide la resolución 092 de 2014 y es a partir de este año cuando entra en vigencia la normatividad para ascensores en la ciudad de Bogotá.

El organismo encargado de diseñar y avalar esta normatividad es el Instituto Colombiano de Normas Técnicas y Certificación ICONTEC, según el decreto 2269 de 1993, y modificado por el decreto 1471 del 5 de Agosto de 2014, cuya misión fundamental es brindar soporte y desarrollo al productor y protección al consumidor, además colabora con el sector gubernamental dando apoyo al sector privado para lograr ventajas competitivas.
De igual manera, el sector de la construcción en Colombia se encuentra normalizado de acuerdo a las tareas específicas que se ejecutan en todo el proceso de construcción, sin embargo hay un certificado especial que actualmente todas las personas que trabajen en construcciones civiles o en cualquier lugar de trabajo donde se supere 1,5 metros de altura deben tener, se trata del certificado de trabajo en altura, el cual está regido por la resolución 1409 de 2012 emitida por el ministerio del trabajo el 23 de julio de 2012, esta resolución fue una mejora realizada a la resolución 3673 de 2009 y es de obligatorio cumplimiento como lo estipula el Sistema de Gestión de la Seguridad y salud en el Trabajo (SG-SST) del decreto 614 de 1984.

La norma NTC 5926-1 establece los parámetros principales de seguridad de los elevadores y la forma de actuación de los inspectores, definiendo un procedimiento para comprobar las condiciones de seguridad y hacer seguimiento para velar por que todos los ascensores inspeccionados cumplan con una serie de requisitos, incluyendo elementos de la norma de trabajo en alturas y sean certificados en un tiempo máximo de 6 meses, esta versión de la norma es la mejora de la NTC 2503 de 2010 en la que se abordaban los procesos de mantenimiento de ascensores y escaleras eléctricas, sin embargo estaba poco direccionada a la seguridad de los usuarios y no estaba soportada en la norma de trabajo en alturas, mientras se enfocaba hacia la operación y las rutinas específicas mínimas que deberían tener los ascensores, términos como limpieza, reparaciones y ajuste eran los elementos principales del cuerpo del documento.

La NTC 5926-1 presenta un enfoque claro hacia la seguridad de los usuarios y esta soportada en la norma de trabajo en alturas en Colombia resolución 1409 de 2012, y las normas internacionales EN81-20 de Europa, la norma americana ANSI/ASME A17.3-2002 y la ISO 4190-1: 2010, las cuales establecen los requisitos mínimos de seguridad, accesibilidad y uso de ascensores.

De la misma manera, la norma Americana ANSI/ASME A17.3-2002 (American National Standars Institute, 2002) es la principal referencia que se ha tomado para la implementación de la norma del transporte vertical, sin embargo a diferencia de la A17.3-2002, en Colombia solo aplica para ascensores previamente instalados y no para la etapa de construcción del edificio en el que será instalado el ascensor, además la norma americana contempla ampliamente todos los equipos relacionados con el transporte vertical, incluyendo además de ascensores eléctricos,
ascensores hidráulicos, montaplatos, ascensores manuales, escaleras eléctricas y andenes móviles, por su parte la norma colombiana separa las escaleras eléctricas y los andenes móviles de los ascensores con la NTC 5926-2.

La norma europea (EN81-1, 1998), denominada “Reglas de seguridad para la construcción de ascensores” establece los parámetros de seguridad para ascensores y montacargas, sin tener en cuenta las escaleras eléctricas ni los andenes móviles, esta norma ha tenido algunas modificaciones haciéndola muy completa y bien estructurada, además subdivide algunos sistemas de los ascensores con una normatividad específica por ejemplo el sistema de alarmas EN 81-1, seguridad de la maquinaria EN292-1 y EN13015:2001 Mantenimiento para ascensores y escaleras automáticas, entre otros. Otro factor importante que diferencia esta norma de la NTC5926 es la fabricación de equipos ya que en Colombia no existen fábricas de ascensores por lo tanto no se incluye esta temática en la norma.

En el contexto latinoamericano, países como México y Brasil han desarrollado normativas para equipos de transporte vertical desde finales de la década de los 90, en el caso de México se toma como referencia la norma MON-053-SCFI-2000 en cuyo enunciado se observa el compromiso del gobierno federal por garantizar que los productos comercializados en México cumplan con los aspectos necesarios de seguridad que protejan al usuario final de manera efectiva. Como punto relevante de esta norma se encuentra la exclusión de los equipos unifamiliares e hidráulicos los cuales no son contemplados en esta normativa, además esta direccionado a la instalación de equipos nuevos dejando un vacío en los ascensores que han sido instalado en años anteriores.

La norma Brasileña NBR NM 207 de 1999 es una norma muy completa y rige para los países miembros de Mercosur, en esta norma se estipula la seguridad como principal factor para su creación y aplicación y resalta la descripción detallada de la naturaleza de los accidentes posibles, así como los grupos de personas a proteger, los objetos a proteger y el uso o destino final del ascensor, además se observa la preocupación por las condiciones ambientales y otros aspectos relacionados con el lugar de instalación.

La implementación de normatividad para el transporte vertical en Colombia tiene sus inicios con el acuerdo 470 de 2011 "Por el cual se establece como obligatoria la revisión general anual de los sistemas de transporte vertical en edificaciones y puertas eléctricas en el Distrito
Capital y se dictan otras disposiciones", sin embargo se aplica solamente en la ciudad de Bogotá. Posteriormente con la resolución 092 de 2014 se designó al FOPAE, actualmente denominado IDIGER como el organismo encargado de hacer las visitas de verificación en los edificios donde se esté llevando a cabo el proceso de certificación, además el certificado debe renovarse anualmente para garantizar que los ascensores mantengan el nivel apropiado de seguridad. En las demás ciudades del país no se cuenta con organismo alguno que se encargue de aplicar o exigir el cumplimiento de la norma.

De acuerdo con el decreto 1471 de 2014 artículo 40, el Organismo Nacional de Acreditación de Colombia ONAC es la entidad encargada de avalar las personas naturales o jurídicas calificadas para el diagnóstico y revisión del funcionamiento de los sistemas de transporte vertical en la ciudad de Bogotá, al presente año existen alrededor de 5 empresas certificadas para hacer esta revisión y es tarea de los propietarios o administradores de edificios donde tengan sistemas de transporte vertical o puertas automáticas, contratar este servicio para certificar sus equipos, el certificado tiene vigencia de 1 año tal como lo estipula el artículo 2 del acuerdo 470 de 2011.

2.2.2 Etapas para la certificación de ascensores con la norma NTC5926-1

En el proceso de certificación se tienen básicamente las siguientes etapas:

En primer lugar el propietario o administrador del edificio contacta una de las empresas autorizadas por la ONAC para hacer la primera inspección de los elevadores, esta inspección es realizada conjuntamente con la empresa prestante del servicio mantenimiento y el tiempo destinado para esta labor varía de acuerdo al número de paradas del equipo y la altura del edificio, en la segunda etapa se realiza la inspección del elevador para lo cual existe una lista de chequeo que contempla detalladamente los componentes del ascensor, medidas, distancias y condiciones específicas que van ligadas con la norma de trabajo en altura, en total la norma estipula 175 ítems que deberán ser revisados y se subdividen en 11 grupos de acuerdo a la parte o subsistema inspeccionado, en la tabla 1 se muestra cada subsistema.
Tabla 1 Grupos de subsistemas para la inspección de los ascensores

<table>
<thead>
<tr>
<th>Numeral</th>
<th>Subsistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Puertas de acceso a ascensor y su sistema mecánico</td>
</tr>
<tr>
<td>6.2</td>
<td>Cables de tracción y sus amarres</td>
</tr>
<tr>
<td>6.3</td>
<td>Grupo tractor y mecanismos de freno</td>
</tr>
<tr>
<td>6.4</td>
<td>Paracaídas y limitador de velocidad</td>
</tr>
<tr>
<td>6.5</td>
<td>Cabina y acceso a la misma</td>
</tr>
<tr>
<td>6.6</td>
<td>Contrapeso</td>
</tr>
<tr>
<td>6.7</td>
<td>Circuitos eléctricos de seguridad</td>
</tr>
<tr>
<td>6.8</td>
<td>Señalización o maniobras que afecten la seguridad</td>
</tr>
<tr>
<td>6.9</td>
<td>Hueco del ascensor</td>
</tr>
<tr>
<td>6.10</td>
<td>Cuarto de máquinas y poleas</td>
</tr>
<tr>
<td>6.11</td>
<td>Mantenimiento, identificación y rótulos</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia a partir de NTC 5926-1.

El criterio para la clasificación de los defectos encontrados en el momento de la inspección es estipulado de acuerdo al grado de peligrosidad ya sea para las personas o para las instalaciones, así:

Defecto leve: Es aquella condición que no supone ningún peligro para las personas y no afecta el normal funcionamiento del equipo, sin embargo si en una inspección se encuentran 10 o más defectos leves será considerado como una condición grave y se deberá tratar como este, para la corrección de los defectos leves se otorga un plazo de 180 días después de la emisión del informe.

Defecto grave: Es aquella condición que no supone un peligro inmediato para los usuarios, sin embargo el plazo máximo para corregirlo es de 30 días después de la emisión del informe.
Defecto muy grave: Es aquella condición que puede constituir un riesgo inminente para los usuarios o daños considerables a las instalaciones, este defecto debe ser corregido de manera inmediata, de lo contrario el elevador deberá quedar fuera de servicio para el público hasta subsanar el defecto.
La calificación de este defecto se encuentra claramente definido en la norma, sin embargo aún existen zonas “grises” en la aplicación práctica ya que ítems como la falta de demarcación, marquillas o etiquetas pueden tener este calificativo.
En la tercera etapa del proceso y después de recibir el informe emitido por la empresa auditora se procede al análisis y planeación de las correcciones necesarias, en esta etapa nuevamente la empresa prestadora del servicio de mantenimiento debe proceder a definir cuáles de los defectos son asumidos por la empresa y cuáles por el propietario de los equipos, en su mayoría los defectos graves o muy graves son elementos que no existen en los elevadores por su tecnología y se procede con una propuesta comercial para dar cumplimiento a lo exigido en este punto se tiene una excelente oportunidad de negocio ya que la empresa prestadora del servicio de mantenimiento ofrece la actualización del equipo para dar cumplimiento a la norma y según sea la antigüedad del mismo el número de adiciones puede ser muy alto, y se evalúa la opción de modernizar por completo el ascensor, de acuerdo con (kone.es, 2017) este procedimiento consiste en reemplazar la electrificación del ascensor, el sistema de elevación, compuesto principalmente por la máquina y el motor; la cabina, la señalización y el sistema de puertas, esta es una opción favorable para los usuarios ya que se conservan elementos importantes del ascensor, por ende el costo es menor comparado con un equipo nuevo y la obra civil es mínima por lo que la afectación a los usuarios también disminuye.
Otro beneficio para la empresa mantenedora es que al cumplir con la norma se mejoran notablemente las condiciones de trabajo en los edificios y el personal puede realizar sus actividades con mayor seguridad al poder controlar los riesgos asociados a las actividades de mantenimiento más eficientemente.
Las diferentes condiciones encontradas en los edificios auditados están directamente relacionadas con la tecnología de los elevadores resumidos en tres grandes grupos, en la tabla 2 se explica la clasificación de equipos por su tecnología especialmente se encuentran condiciones graves y
muy graves en instalaciones previas al año 2000, En la figura 3 se muestra las partes principales del ascensor y su ubicación en el recorrido del edificio.

Tabla 2 Tecnologías ascensores evaluados.

Tecnologías ascensores evaluados.

<table>
<thead>
<tr>
<th>Elevadores de tecnología analógica</th>
<th>Elevadores de tecnología intermedia</th>
<th>Elevadores de última tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevadores de una y dos velocidades de corriente alterna, hasta 1,0 m/s.</td>
<td>Elevadores con microprocesador de dos velocidades, hasta 1,5 m/s.</td>
<td>Elevadores con velocidad variable por frecuencia y máquinas de imán permanente pueden tener cintas de tracción en lugar de cables, algunos equipos no utilizan cuarto de máquinas, hasta 2,5 m/s.</td>
</tr>
<tr>
<td>Elevadores de velocidad variable de corriente continua, hasta 5m/s.</td>
<td>Elevadores con microprocesador con velocidad variable por variación de voltaje y frecuencia hasta 2,5 m/s.</td>
<td>Elevadores de alta velocidad con sistemas regenerativos, máquinas sin engranajes o máquinas de imán permanente, hasta 6 m/s.</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.
2.3 MARCO TÉCNICO

2.3.1 Partes Principales Del Ascensor

Figura 2 Partes principales del ascensor.

Fuente: (eninter.com, 2015).

Al hacer el desglose de las piezas de un elevador se encuentran básicamente 3 subsistemas, los cuales son explicados a continuación.

2.3.2 Grupo tractor:
En esta sección se encuentra la máquina de tracción la cual puede ser con o sin engranajes, su motor puede ser alimentado con corriente alterna para bajas velocidades, o corriente continua
para velocidades superiores a tres metros por segundo (3m/s), cuenta también con un freno que se encarga detener el equipo y los cables de tracción en acero donde se transfiere el movimiento hacia la cabina y el contrapeso, en el conjunto tractor se produce el movimiento y parada del equipo obedeciendo a los comandos recibidos por el control principal, en la figura 4 se muestra el conjunto tractor de un elevador residencial.

Figura 3 Máquina de tracción.

![Figura 3 Máquina de tracción.](image)

Fotografía máquina de un elevador tecnología intermedia.

2.3.3 Control:
El control principal maneja la parte lógica del elevador y procesa las señales que recibe desde los comandos de cabina y de piso, existen controles de diversas tecnologías como lo son controles electromecánicos a base de relevos, controles electrónicos de tecnología intermedia y de última generación cuya velocidad de procesamiento y ventajas en ahorro de energía es mayor, en el control se encuentra el “cerebro” del elevador y en arreglos complejos con más de tres elevadores en grupo se tienen programas especiales para administrar los despachos de las llamadas y la
zonificación de los elevadores, en la figura 5 se muestra un control principal de un elevador de tecnología intermedia.

Figura 4 Control de operación.

Fotografía control electrónico.

2.3.4 Cabina:

En la cabina se encuentran los principales comandos del elevador, debe tener una placa con los datos de capacidad de peso, botones marcados para cada piso, para apertura y cierre de puertas y un botón de emergencia el cual activa la señal de emergencia y de acuerdo a la norma debe habilitar un intercomunicador entre la cabina y la recepción o el centro de seguridad, también posee el dispositivo principal de seguridad denominado “paracaídas” el cual garantiza que el
ascensor no se desplomara el caída libre, en la parte superior de la cabina se encuentran otros dispositivos de seguridad que exige la norma NTC 5926-1 como se observa en la figura 6, un carral sobre techo y comando de manejo en inspección.

Figura 5 Cabina del ascensor vista desde el techo.

Fotografía de cabina parte superior.

2.3.5 Foso del ascensor

En el foso del ascensor se encuentran importantes elementos de seguridad contemplados en la norma, como los son el interruptor de seguridad para la polea tensora del regulador, los amortiguadores de cabina y contrapeso, el stop de emergencia inferior, limites finales inferiores, iluminación, protección de partes en movimiento y la escalera de acceso cuando la altura supera
los 1,5 metros, existen casos en los que los fosos son demasiado profundos > 2 metros y se requiere un sistema de protección contra caídas instalado; en la figura 7 se muestra un foso que cumple al 100% con la norma NTC5926-1.

Figura 6 Foso del ascensor

Fotografía foso del ascensor.
3. DIAGNÓSTICO PARA EL MODELO EN ESTUDIO

3.1 MÉTODOS

3.1.1 Tipo De Investigación

La presente investigación es de tipo descriptivo, siguiendo a Bernal (2010) es necesario trabajar en seleccionar las características fundamentales del objeto de estudio, y utilizar el método de análisis para identificar una situación concreta, señalar rasgos distintivos y particulares de personas, situaciones o cosas. La investigación descriptiva combinada con ciertos criterios de clasificación sirve para ordenar, agrupar o sistematizar los objetos involucrados en el trabajo indagatorio. Su objetivo es describir la estructura de los fenómenos y su dinámica, identificar aspectos relevantes de la realidad y pueden usar técnicas cuantitativas o cualitativas.

Esta metodología es apropiada para el estudio porque se encuentra alineada con el propósito de diseñar un modelo de mejora en el proceso de mantenimiento preventivo de ascensores, además se hará uso de una lista de chequeo como técnica de recolección de información y serán desarrolladas las actividades del proceso permitiendo conocer las ventajas y deficiencias del objeto de estudio, Esto con el fin de poder definir un mejor proceso para implementarlo de acuerdo a cada una de las tecnologías de los ascensores y así dar cumplimiento a las especificaciones técnicas y funcionales que exige la norma NTC5926-1. Para ello se hace uso de herramientas de investigación que conllevaran a tener mayor claridad en el proceso y sirven de guía para recopilar y analizar datos de manera ordenada y efectiva. A continuación se procede a enunciar cada una de las herramientas y su aplicación en presente caso de estudio.
3.1.2 Población

Según Tamayo (1993) la población se define como la “totalidad del fenómeno a estudiar en donde las unidades de la población poseen una característica en común la cual se estudia y da origen a los sujetos de la investigación”.

De acuerdo al proyecto a realizar bajo la mejora de las condiciones de los ascensores con respecto al tipo de tecnología, se puede definir como población a todos los ascensores que van a entrar a estudio para su nueva actualización bajo las condiciones que exige actualmente la norma NTC 5926-1.

Dentro del estudio a realizar se encuentran gran parte de los ascensores instalados en la ciudad de Bogotá, los cuales serán inspeccionados de acuerdo a una lista de chequeo en la que se incluyen los principales ítems que evalúa la norma, prestando especial atención en aquellos ítems que por su incumplimiento pueden generar defectos catalogados como “muy graves” y que ameritan detener inmediatamente el equipo y retirarlo del servicio hasta que estos sean corregidos. Dentro del sector a evaluar existen ascensores de diferentes tipos de tecnologías se llevará a cabo un estudio en población de aproximadamente 3000 ascensores correspondientes a un sector de Bogotá comprendido entre la calle 45 y la calle 116, entre la avenida carrera 30 y la carrera primera este, para ello el equipo cuenta con 22 técnicos de mantenimiento preventivo y dos jefes de área quienes estarán encargados de la recolección de la información.

En el sector de Bogotá en el cual se va a desarrollar la investigación se encuentran ascensores de diferentes tecnologías tales como:

- Ascensores electromecánicos
- Ascensores Electrónicos
- Ascensores con cuarto de maquinas
- Ascensores sin cuarto de maquinas
- Ascensores de tecnología antigua unidad multivoltaje
3.1.3 Muestra

Según Hurtado (1998), la muestra se define como una porción que se toma para realizar un estudio, el cual se considera representativo de la población.

Para la realización de esta investigación se desarrollará con la recolección de datos a través de una lista de chequeo, diligenciada por los técnicos de mantenimiento preventivo para saber las condiciones actuales de los ascensores de acuerdo a la tecnología de cada uno.

El tamaño de la población corresponde a 2880 ascensores que corresponden a los contratos activos en la empresa en el periodo de mayo a julio de 2016, al aplicar la fórmula.

Con heterogeneidad de 50%,

Un margen de error de 3%

Un nivel de confianza de 95,6%

Calcular la muestra de manera que bajo el rango de error obtenido, la probabilidad de que la muestra sea representativa de la población sea del 95,6%.

Calcular a través de la siguiente fórmula:

\[
n = \frac{z^2 \cdot p \cdot q \cdot N}{N \cdot e^2 + z^2 \cdot p \cdot q} \]

Z = Nivel de confianza

N = Población-Censo

p = Probabilidad a favor

q = Probabilidad en contra

e = error de estimación

Se obtiene una muestra de 860 ascensores los cuales fueron inspeccionados en el periodo mencionado.

Fuente: (Corral, 2015).
3.2 TÉCNICAS E INSTRUMENTO DE RECOLECCIÓN DE INFORMACIÓN

La recolección de información se obtendrá de datos suministrados mediante formatos establecidos y entregados a cada uno de los técnicos preventivos, esto con el fin de recoger las condiciones actuales de los ascensores y así identificar la necesidad que se tiene en cada uno de las tecnologías de los equipos de acuerdo al año de diseño, está información será llevada a una tabla de datos estadísticas los cuales nos mostraran las necesidades de cada ascensor para poderlo llevar a cumplir con los requerimientos de la norma 5926-1 para poder ser certificado. En la actualidad cada técnico tiene repartida una zona para que visite y desarrolle el mantenimiento preventivo de los ascensores que le correspondan en el mes. Los estudiantes de maestría Fabio Franco y Jhon Sánchez, los cuales son trabajadores activos y que llevan laborando por más de 10 años en la compañía, de acuerdo a su experiencia plantearan unos procesos que sirvan para identificar, intervenir y ajustar aquellos trabajos que hacen falta en cada uno de los equipos con el fin que sean desarrollados por los técnicos preventivos en los ascensores para poder ser llevados al cumplimiento de la norma 5926-1 y así poder garantizar al usuario una mayor seguridad y tranquilidad en el servicio.

3.2.1 Forma de recolección de información

De acuerdo a la herramienta 5S estudiada en el capítulo anterior, y teniendo en cuenta que es necesario identificar, organizar y mejorar el proceso de mantenimiento preventivo de ascensores, se desea diseñar un formato, el con el cual será posible identificar las condiciones reales que en que se encuentran los ascensores y diferentes tecnologías que existen, y así desarrollar un procedimiento estándar en el mantenimiento preventivo para la actualización de los ascensores, esto con el fin de dar cumplimiento a la certificación de la NTC 5926-1 haciendo uso de herramientas de la metodología de mejora continua Kaizen y 5´S, y poder garantizar la seguridad de los técnicos y usuarios que en general interactúan con el servicio de transporte vertical.

El formato ha sido diseñado teniendo en cuenta los ítems de mayor relevancia que contempla la norma y que al momento de su corrección genera un impacto importante para los usuarios tanto
económicamente como los procedimientos particulares, además factores que requieran adicionar elementos o adaptaciones para lograr la certificación de los equipos.

En la tabla número 3 se presenta un diseño de formato para la recolección de datos de manera que sea posible identificar el estado actual de los equipos, con el fin de dar cumplimiento con lo exigido en la norma 5926-1 y tener un diagnostico real de las condiciones de seguridad de los ascensores, además se dejan espacios adicionales en los cuales se puedan reportar condiciones particulares de los equipos, como condiciones especiales del edificio o características de tecnología como es el caso de los elevadores con cintas de tracción entre otros.
Tabla 3 Formato de Inspección de ascensores.

<table>
<thead>
<tr>
<th>NOMBRE DEL EDIFICIO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECCIÓN</td>
<td></td>
</tr>
<tr>
<td>FECHA</td>
<td></td>
</tr>
<tr>
<td>NUMERO DEL ASCENSOR</td>
<td></td>
</tr>
</tbody>
</table>

Colocar una X en el sitio que corresponda, de acuerdo a la condición actual en que se encuentre.

<table>
<thead>
<tr>
<th>ELEMENTOS IMPORTANTES PARA LA CERTIFICACION DE LOS ASCENSORES</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUARDAPOLEA TRACTORA Y DEFLECTORA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMARCACION EN CABLES DE TRACCION, SENTIDO DE GIRO Y BREAKERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP EN MAQUINA DE TRACCION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTECTOR DE POLEA DEL LIMITADOR DE VELOCIDAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESO ADECUADO EN CUARTO DE MAQUINAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILUMINACION DE CUARTO DE MAQUINAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTECCION EN CIRCUITOS EN CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORRAL ENCIMA DE CABINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL DE INSPECCION / NORMAL TOCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILUMINACION ENCIMA Y DEBAJO DE CABINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITOFONIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUZ DE EMERGENCIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASCIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSOR DE CARGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRO DE AMORTIGUADORES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRO PESA DE REGULADOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCALERA EN FOSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP EN FOSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| NOMBRE DEL TECNICO | |
| OBSERVACIONES | |

Fuente, elaboración propia.
Tabla 4 Formato de reporte de trabajos para ascensores.

<table>
<thead>
<tr>
<th>NOMBRE DEL EDIFICIO</th>
<th>DIRECCIÓN</th>
<th>FECHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMERO DEL ASCENSOR</th>
<th>REPARACION</th>
<th>SOLICITUD DE OFERTA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colocar una X en el sitio que corresponda, de acuerdo a la condición actual en que se encuentre.

<table>
<thead>
<tr>
<th>ELEMENTOS IMPORTANTES PARA LA CERTIFICACIÓN DE LOS ASCensores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL TÉCNICO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente elaboración propia.
3.2.2 Descripción del formato:

El formato fue diseñado tomando como base los principales ítems que contempla la norma NTC 5926-1 y cuyo incumplimiento puede tener consecuencias graves para los usuarios o la corrección de la condición encontrada amerita una inversión considerable de tiempo y dinero, además se le dio prioridad a los puntos que pueden generar una falta grave o muy grave por su incumplimiento, en la página 2 del formato se deja un espacio para que el técnico escriba características especiales de acuerdo a la condición específica del equipo, como desniveles en piso, elementos externos o espacios reducidos.

3.2.3 Guarda polea en cuarto de máquinas.
Este es un elemento que protege los trabajadores de riesgos como el atrapamiento mecánico, y la mayoría de los elevadores no poseen este elemento por que la tecnología con la que fueron diseñados no contemplaba estos factores, proviene el riesgo de atrapamiento mecánico, salida de cables por oscilaciones y caída de objetos de cuarto de máquinas, además es catalogado en la norma como una falta grave.

3.2.4 Demarcación de cables de tracción, sentido de giro y breakers.
Son etiquetas y marcaciones necesarias en caso que se requiera hacer un rescate de personas por atrapamiento en la cabina, de tal manera que sea posible saber cuándo el ascensor se encuentra a nivel de piso o si es necesario subir o bajar la cabina para que el rescate sea seguro, es catalogado en la norma como una falta muy grave.

3.2.5 Stop en máquina de tracción.
Se refiere a un botón de emergencia tipo hongo de color rojo, el cual debe estar ubicado cerca a la máquina de tracción, de manera que sea posible detener el movimiento de la máquina en caso de una emergencia o un accidente con las poleas, previene el riesgo de atrapamiento mecánico, es catalogado en la norma como una falta grave.
3.2.6 Protector de polea del limitador de velocidad.
Este es un elemento que protege los trabajadores de riesgos como el atrapamiento mecánico, y la mayoría de los elevadores no poseen este elemento por que la tecnología con la que fueron diseñados no contemplaba estos factores previene el riesgo de atrapamiento mecánico, y está catalogado en la norma como una falta grave.

3.2.7 Acceso adecuado a cuarto de máquinas.
Está relacionada a la norma de trabajo en alturas (resolución 1094 de 2012) y debe cumplir con los parámetros de iluminación y distancias correctas para el acceso al cuarto de máquinas, previene el riesgo de caída de alturas, es catalogado en la norma como una falta grave.

3.2.8 Iluminación de cuarto de máquinas.
Se refiere a la iluminación del cuarto de máquinas la cual debe ser como mínimo de 200 lux de manera que asegure la correcta visibilidad ya que en este espacio existen equipos en movimiento y elementos de alta sensibilidad, está catalogado en la norma como una falta grave.

3.2.9 Protección de circuitos en control.
Este ítem evalúa las protecciones eléctricas que deben tener los circuitos en el control principal para mitigar el riesgo de electrocución al que se exponen los trabajadores en el momento de intervenir el ascensor, ya sea en mantenimiento programado o en una reparación de emergencia, previene el riesgo de choque eléctrico, quemaduras y descargas eléctricas que incluso pueden llegar a ser fatales, es catalogado en la norma como una falta grave.

3.2.10 Corral en techo de cabina.
Está relacionado con la norma de trabajo en alturas, se trata de un corral que prevenga la caída de los trabajadores cuando se encuentran en el techo de cabina, este elemento debe tener las medidas estipuladas en la norma de trabajo en alturas en la sección medidas de prevención y protege a los trabajadores del riesgo asociado a caída de alturas, es catalogado en la norma como una falta m grave.
3.2.11 Control de inspección/Normal TOCI.
Se trata de un comando de inspección el cual debe tener un stop tipo hongo rojo, este elemento debe estar ubicado en el techo del ascensor y su función de interface para mover el ascensor en forma manual y controlada desde el techo de cabina, es uno de los elementos más costos en su instalación ya que requiere una adaptación al circuito de seguridad y maniobra, es catalogado en la norma como una falta grave.

3.2.12 Intercomunicador.
Se refiere a el sistema de comunicación entre la cabina del ascensor y la recepción o portería del edificio, este debe funcionar en caso de emergencia y su alimentación debe ser autónoma y no depender de la red eléctrica externa, de manera que se pueda garantizar la comunicación con los usuarios en caso de emergencia, es catalogado en la norma como una falta grave.

3.2.13 Luz y alarma de emergencia.
Se refiere a las señales audiovisuales que debe tener el equipo cuando se presenta falla de energía de la red externa y permite a los usuarios que se encuentran atrapados en la cabina del ascensor y activar el procedimiento para la maniobra de rescate, es catalogado en la norma como una falta grave.

3.2.14 Fascia o faldón
Es un elemento de seguridad que se ubica en la parte inferior de la cabina para prevenir la caída hacia el interior del foso del ascensor cuando la cabina se encuentra entre pisos, está catalogada en la norma como una falta grave.

3.2.15 Sensor de carga.
Es el dispositivo que monitorea la carga que tiene la cabina evitando que se exceda la carga máxima para la cual está diseñado el equipo, y se puedan presentar daños o bloqueos no programados, es catalogado por la norma como una falta grave.
3.2.16 Micro de amortiguadores en cabina y contrapeso.
Se trata del micro switch que debe tener el ascensor en los amortiguadores para cabina y contrapeso, de manera que al activarse bloquean el equipo eléctricamente impidiendo el movimiento hasta que sea revisado y activado por personal especializado, es catalogado en la norma como una falta grave.

3.2.17 Micro switch de pesa del regulador
Es una seguridad redundante para la polea del regulador de velocidad, está ubicada en el foso del ascensor y es de activación mecánica, la carencia de este elemento está catalogada en la norma como una falta grave.

3.2.18 Escalera de acceso a foso.
Este elemento aplica para profundidades de más de 1,5 metros y busca garantizar que el acceso al foso del ascensor sea seguro, está ligada a la norma de trabajo en alturas y previene el riesgo de caída, es catalogada como una falta grave.

3.2.19 Stop de foso
El stop de foso es un botón de emergencia para bloquear el ascensor cuando se trabaja en el foso del mismo es una de las seguridades más importantes ya que se ubica en un lugar donde el máximo control del equipo es absolutamente necesario, previene riesgos como el atrapamiento mecánico, aplastamiento, amputaciones, cortes y otros, está catalogada en la norma como una falta grave.

De acuerdo a la tecnología de cada ascensor (electrónico, electromecánico, con sala de máquinas y sin sala de máquinas) se desarrollarán planes de mejora para aplicar a las condiciones de cada ascensor y tener mejores condiciones de funcionamiento y así poder llegar con un gran parte de ascensores que dé cumplimiento con la norma 5926-1. Se espera poder garantizar la seguridad de todas las personas que interactúan con los ascensores y poder brindar mayor satisfacción y tranquilidad al cliente.
3.3 PROCEDIMIENTO PARA EL TRABAJO DE CAMPO

Beltrán, R. (2005) caracteriza la investigación cuantitativa como:

- La que recoge información empírica (de cosas o aspectos que se pueden contar, pesar o medir) objetiva y que por su naturaleza siempre arroja números como resultado
- La investigación cuantitativa, se caracteriza porque su diseño incluye la formulación de hipótesis que se traduce en variables, las que a su vez se traducen en indicadores cuantificables
- El método deductivo está asociado frecuentemente con la investigación cuantitativa.
- Se recogen y analizan datos cuantitativos sobre variables.
- Estudia la asociación o relación entre variables cuantificadas.
- La investigación cuantitativa, trata de determinar la fuerza de asociación o correlación entre variables, la generalización y objetivación de los resultados a través de una muestra para hacer inferencia a una población de la cual toda muestra procede.
- Los fundamentos de la metodología cuantitativa se pueden encontrar en el positivismo que surge en el primer tercio del siglo XIX como una reacción ante el empirismo que se dedicaba a recoger datos sin introducir los conocimientos más allá del campo de la observación.
- Los métodos cuantitativos son muy potentes en términos de validez externa ya que con una muestra representativa de la población hacen inferencia al objeto de estudio a partir de una muestra con una seguridad y precisión definida.
- Inferencias más allá de los datos, es confirmatoria, inferencial, deductiva y orientada al resultado y/o datos "sólidos y repetibles"

El desarrollo de este proyecto se realizará de la siguiente forma: por medio de la investigación cuantitativa descriptiva y para lo cual se ha desarrollado una serie de métodos los cuales son presentados a continuación:
Identificar los trabajos necesarios que se deben tener en cuenta en cada uno de las diferentes tecnologías de los ascensores (electrónico, electromecánico, con sala de máquinas y sin sala de máquinas) para dar cumplimiento a la norma NTC5926-1.

Elaborar formatos de acuerdo a las tecnologías de los ascensores, estos deben ser entregados a cada técnico preventivo para su respectivo diligenciamiento a manera de lista de chequeo enfocándose en los principales ítems necesarios para dar cumplimiento a la norma NTC5926-1.

Recolección de formatos, análisis y elaboración de una tabla para los datos suministrados por los técnicos preventivos de acuerdo a la necesidad de cada tecnología de ascensor.

Plantear una rutina en la que se intervengan los trabajos pendientes de cada ascensor para que cumpla con los requerimientos mínimos para ser certificados por la norma NTC5926-1.

Al establecer las condiciones reales de los equipos se hará un diagrama de Pareto con el ánimo de priorizar las rutinas que se deberán incluir en los nuevos procedimientos para abordar el mayor porcentaje de ítems y elevar el nivel de cumplimiento del sector evaluado.

Identificar de acuerdo al tipo de contrato que la administración tiene con la compañía a realizar una venta de los repuestos y trabajos que se necesitan para la actualización de los ascensores (oportunidad de negocio) o a ejecutar si el contrato es integral, también evaluar la posibilidad de enviar una propuesta comercial para modernizar los equipos, esta propuesta además de contemplar los ítems de la norma trae beneficios como la reducción en el consumo de energía, mejora en el confort y mayor seguridad para los usuarios.

Analizar los datos recopilados para identificar las variables relevantes en la investigación.
3.4 DESCRIPCIÓN Y ANALISIS PARA DETERMINAR LAS NECESIDADES DE MEJORAR LOS PROCEDIMIENTOS DE MANTENIMIENTO PREVENTIVO BASADO EN LA NORMA NTC 5926-1.

3.4.1 Descripción de la empresa

La empresa para la cual se está realizando el estudio es una organización con más de 160 años de trayectoria a nivel mundial, dedicada a la fabricación venta, instalación, modernización y mantenimiento de ascensores, en Colombia tiene presencia desde hace más de 80 años.

3.4.2 Venta:

Proceso comercial en el que se busca de satisfacer la necesidad de suplir un equipo de transporte vertical que cubra los requerimientos de los clientes, existe una amplia gama de productos para satisfacer la necesidad de los clientes la principal diferencia se encuentra en la velocidad de los equipos marcada por la altura de los edificios y el uso final, ya sea empresarial residencial entre otros.

3.4.3 Instalación:

Es el proceso en el cual se instala el ascensor en el sitio el cual fue inicialmente acordado con el cliente para suplir la necesidad de los usuarios. Este equipo es instado bajo los requerimientos negociados en la venta inicial.

3.4.4 Modernización:

La modernización se encarga de repotenciar un equipo de transporte vertical con la adaptación de controles, máquinas, indicadores entre otros, con mejores tecnologías debido al deterioro de sus repuestos, con el fin de tener un equipo mejor confort, en ocasiones se realiza el embellecimiento de cabina para que el usuario también perciba el cambio del ascensor.
3.4.5 Mantenimiento:

El mantenimiento es el encargado como su nombre lo indica es de mantener el ascensor en buenas condiciones por medio de rutinas de mantenimiento que se realizan por personal técnico, generalmente se realiza de manera mensual; Dentro de los mantenimientos se encuentra:

- mantenimiento preventivo
- mantenimiento correctivo

3.4.6 Mantenimiento preventivo

En esta labor se realizan visitas periódicas programadas a los ascensores para efectuar rutinarias de limpieza, lubricación, ajustes de todos los elementos que conforma el ascensor. El objetivo primordial es poder evitar por medio de este mantenimiento fallas en los equipos, realizando cambio de aquellos repuestos que se requiera

3.4.7 Mantenimiento correctivo

En este mantenimiento se encuentra la atención de los ascensores que presentan fallas mecánicas y eléctricas, la cual se debe intervenir por un personal capacitado, con el fin de eliminar la falla que se presente en el equipo.

3.5 ANÁLISIS DE LAS CONDICIONES ACTUALES DE LOS ASCENSORES.

De acuerdo a la norma NTC5926-1 fue establecida para realizar la inspección de ascensores, escaleras, rampas y puertas eléctricas, con el fin de garantizar que se encuentren trabajando en buenas condiciones dando cumplimiento con todas las seguridades de los equipos.
Según inspección de los equipos la norma clasifica los defectos que se evidencian en evaluación de los equipos. Los defectos se clasifican de acuerdo al grado de peligrosidad que intervenga directamente hacia los usuarios. Estos defectos están clasificados leves, graves y muy graves. De acuerdo a los requerimientos o exigencias de la norma, se identificaron los puntos más relevantes, para poder llevar un análisis del cual sea posible diseñar un proceso de mejora en el procedimiento de mantenimiento preventivo.

Para poder identificar las necesidades que se tiene de cada ascensor, se tomó una muestra de 860 ascensores en los cuales se identificaron los puntos relevantes que exige la norma 5926-1 para la certificación de cada ascensor.

Dentro de los datos más relevantes que se deben tener en cuenta para brindar la seguridad de cada usuario en caso de una emergencia se encuentran los siguientes puntos según la norma 5926-1:

De acuerdo al estudio realizado en el levantamiento de la información en la figura 8 se evidencia los siguientes datos los cuales dan muestra de un cumplimiento total al 100%, sin tener defecto o necesidad en este ítem. La compañía realizó un plan de instalación de este elemento para poder garantizar la seguridad de los técnicos en el foso del ascensor y así poder garantizar que el técnico tiene el control total del equipo.

Figura 7 Porcentaje de cumplimiento de stop en foso.

<table>
<thead>
<tr>
<th>STOP EN FOSO</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>860</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.5.1 Protección de guarda polea tractora:

Esta protección se encuentra ubicada en la maquina tractora del ascensor, con el fin de evitar que cuando se requiera realizar una reparación se tenga la precaución de evitar que el técnico tenga contacto directo con la polea y así evitar un accidente fatal debido al peligro que se tiene con este elemento.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 9, con un cumplimiento total del 39.38%.

Figura 8 Porcentaje de cumplimiento para polea protegida.

<table>
<thead>
<tr>
<th>POLEA PROTEGIDA</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>541</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

3.5.2 Instalación de micro eléctrico en limitador de velocidad:

Este micro se instala en la polea del limitador de velocidad con el fin de evitar que en caso de actuación de este sistema quede bloqueado el sistema mecánico y la maquina siga trabajando provocando una maquina quemada. De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 10, un cumplimiento total del 88.83.

53
Figura 9 Porcentaje de cumplimiento en limitador de velocidad.

Fuente: elaboración propia.

3.5.3 Corralillo en tocho de cabina:

Este sistema se instala en la parte superior de cabina para evitar caída de técnicos cuando se realice trabajos de mantenimiento preventivo o correctivo.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 11, un cumplimiento total del 36.62%.

Figura 10 Porcentaje de cumplimiento corralillo en techo de cabina.

<table>
<thead>
<tr>
<th>LIMITADOR VELOCIDAD</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>764</td>
<td>96</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

Tabla 7. Corralillo

<table>
<thead>
<tr>
<th>CORRALILLO</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>315</td>
<td>545</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.
La existencia de corralillo en techo de cabina es denominada como medida de prevención contra caídas por la resolución 1409 de 2012, y posee una serie de características previamente definidas para brindar mayor seguridad a las personas que interactúan con esta sección del elevador.

3.5.4 Escalera de foso:

La escalera se instala en el foso de los ascensores cuando superan la profundidad de 1.50 metros, con el fin de garantizar el ingreso seguro de los técnicos y ceñido a la norma de trabajo en alturas resolución 1409 de 2012.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 12, un cumplimiento total del 25.58%.

Figura 11 Porcentaje de cumplimiento en escalera de acceso a foso.

![Figura 11 Porcentaje de cumplimiento en escalera de acceso a foso.](image)

<table>
<thead>
<tr>
<th>Tabla 8. Escalera</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCALERA</td>
</tr>
<tr>
<td>CUMPLE</td>
</tr>
<tr>
<td>NO CUMPLE</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>640</td>
</tr>
</tbody>
</table>

Fuente elaboración propia.
3.5.5 Citofonía:
Es un medio de comunicación entre cabina y recepción para poder dar aviso en caso de una emergencia en el ascensor.
De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 13, un cumplimiento total del 69.41%.

Figura 12 Porcentaje de cumplimiento de citofonía.

Fuente elaboración propia.

3.5.6 Luz y alarma en cabina:
Este sistema es autónomo de energía por medio de una fuente de poder en caso que el ascensor se quede sin suministro de energía eléctrica. La luz de emergencia y la alarma es instalada dentro de cabina para que en caso de emergencia las personas puedan tener luz dentro de cabina y puedan dar un aviso sonoro a los residentes del edificio, avisando que hay personal atrapado en la cabina del ascensor.
De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 14, un cumplimiento total del 69.41%.

<table>
<thead>
<tr>
<th>CITOFONÍA</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMPLE</td>
<td>597</td>
<td>263</td>
</tr>
</tbody>
</table>

Tabla 9 Citofonía
Figura 13 Porcentaje de cumplimiento de luz y alarma de emergencia.

![Diagrama de luz y alarma de emergencia]

<table>
<thead>
<tr>
<th>LUZ Y ALARMA DE EMERGENCIA</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMPLE</td>
<td>597</td>
<td>263</td>
</tr>
</tbody>
</table>

Fuente elaboración propia.

3.5.7 Sensor de carga:

Este elemento electrónico se encarga de censar la capacidad de carga al cual se encuentra diseñado el equipo, esto con el fin de evitar que el ascensor trabaje con sobrecarga y así impedir que la cabina sobrepase su límite por exceso de peso en la primera parada.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 15, un cumplimiento total del 73.72%

Figura 14 Porcentaje de cumplimiento de sensor de carga.

![Diagrama de sensor de carga]

<table>
<thead>
<tr>
<th>SENSOR DE CARGA</th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMPLE</td>
<td>634</td>
<td>226</td>
</tr>
</tbody>
</table>

Fuente elaboración propia.
3.5.8 Stop en máquina:

Es un dispositivo electrónico el cual se instala al lado de la maquina con el fin pulsarlo para trabajos de reparación o en caso de una emergencia.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos como se muestra en la figura 16, un cumplimiento total del 21.51%.

Figura 15 Porcentaje de cumplimiento de stop de máquina.

![Figura 15](image)

Fuente: elaboración propia.

3.5.9 Demarcación de cables de tracción:

Se realiza una demarcación de aproximadamente unos 10 cms directamente en los cables de tracción con relación a una identificación en la bancada o soporte de la maquina con el fin de identificar que la cabina se encuentra a nivel de piso y poder realizar la evacuación del personal que se encuentre encerrado cuando se presenta una emergencia.

De acuerdo al estudio realizado en el levantamiento de la información se evidencia los siguientes datos los cuales nos muestra un cumplimiento total del 7.32%.
Figura 16 Porcentaje de cumplimiento en demarcación de cables.

Según estudio realizado en dos de las áreas de Bogotá comprendidas entre la calle 45 y la calle 116, se recogieron datos con la ayuda de 10 técnicos preventivos encargados en cada una de las rutas con el formato de recolección de las condiciones iniciales de los ascensores, obteniendo los datos mostrados en la tabla 2, los cuales son relevantes en la norma NTC5926-1.
<table>
<thead>
<tr>
<th></th>
<th>CUMPLE</th>
<th>NO CUMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP DE FOSO</td>
<td>860</td>
<td>0</td>
<td>764</td>
<td>739</td>
<td>545</td>
<td>640</td>
<td>597</td>
<td>634</td>
<td>797</td>
<td>346</td>
<td>514</td>
<td>675</td>
<td>63</td>
<td>185</td>
<td>63</td>
<td>185</td>
<td>63</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLEA PROTEGIDA</td>
<td>319</td>
<td>96</td>
<td>121</td>
<td>220</td>
<td>263</td>
<td>263</td>
<td>226</td>
<td>263</td>
<td>185</td>
<td>346</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMITADOR VELOCIDAD</td>
<td>541</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CIRCUITOS CONTROL</td>
<td></td>
</tr>
<tr>
<td>CORRAL</td>
<td></td>
</tr>
<tr>
<td>ESCALERA</td>
<td></td>
</tr>
<tr>
<td>CITOFONÍA</td>
<td></td>
</tr>
<tr>
<td>LUZ Y ALARMA DE</td>
<td></td>
</tr>
<tr>
<td>SENSOR DE CARGA</td>
<td></td>
</tr>
<tr>
<td>STOP DE MAQUINA</td>
<td></td>
</tr>
<tr>
<td>MARCACIÓN DE CABLES</td>
<td></td>
</tr>
<tr>
<td>TOCI</td>
<td></td>
</tr>
</tbody>
</table>
Con la recolección de datos y al poder identificar las necesidades de cada ascensor para poder cumplir con la exigido por la norma 5926-1, so logra definir los elementos y procedimientos necesarios para trabajar en un plan de oferta hacia los clientes. Debido al diseño original de los equipos, los contratos actuales de las compañías no cubren estas adaptaciones o ajustes, motivo por el cual con la información ya recolectada se procederá con el departamento comercial a realizar una oferta a cada uno de los clientes para poder ir minimizando los puntos que exige la norma y con el nuevo procedimiento en el mantenimiento preventivo poder llegar a un equipo que se pueda certificar y poder garantizar a los usuarios un quipo confiable y seguro.

De acuerdo con las metodologías de mejora continua estudiadas anteriormente se trabajará en las técnicas más destacadas, basada en 5S (seleccionar, ordenar, limpiar, estandarizar y mantener) y con la recolección de la información de las condiciones actuales de los ascensores, se podrá evidenciar las necesidades que existen en la mayoría de los equipos para poder cumplir con la norma, es por esto que se desarrollara un procedimiento estándar a las diferentes tecnologías con el fin de poder cubrir en la gran mayoría los requerimientos que exige la norma 5926-1.

Lo anterior en concordancia con el objetivo fundamental de las 5´S organizar el trabajo y las condiciones de seguridad, el clima laboral, la motivación del personal, la eficiencia y en consecuencia la calidad, la productividad y la competitividad organizacional (UPDEC, 2013), esto sucede al organizar el trabajo en 5 etapas principales que van generando cambios en el proceso y así cada etapa se soporta en la anterior para aprovechar al máximo los beneficios de la metodología en cuestión.
A continuación se describirá el modelo de mejora propuesto, al cual se ha llegado después de hacer el análisis detallado de la norma NTC 5926-1 y las diferentes metodologías de mejora continua, para llevarlas al proceso de mantenimiento preventivo de ascensores, enfocadas hacia la seguridad de los usuarios y el cumplimiento de la norma, como es descrito por Suárez Barraza (2008) que se fortalezcan los elementos que potencian la mejora y se reduzan los elementos que limitan el proceso, con ello, hacer la descripción del paso a paso a seguir en todo el proceso de mantenimiento preventivo de ascensores y servir como base para desarrollar una propuesta que permita actualizar los equipos y cumplir con lo exigido en la norma.

Al realizar el análisis de la teoría en administración, la mejora continua se es un concepto ampliamente utilizado y en términos globales ha guiado la administración moderna, en algunos casos se han seguido estrictamente un modelo, como el caso de Toyota y Motorola a finales del siglo XX, en términos generales la influencia Japonesa es notoria, sin embargo en la mayoría de las metodologías estudiadas hacen uso de un término en común, se trata de la disciplina, la cual desde el punto de vista de la cultura Japonesa es la principal herramienta para lograr cambios de alto impacto en una organización.

Otras metodologías como Lean y Six Sigma también basan su filosofía de mejora en las organizaciones contemplando ampliamente los diferentes departamentos y su implementación requiere del compromiso gerencial y la transformación de la organización a nivel macro, estas metodologías requieren mayor inversión de recursos y tiempo para su implementación, sin embargo las metodologías como Kaizen y 5´S son herramientas más sencillas y más fáciles de implementar en procesos específicos como el caso del mantenimiento preventivo de ascensores.

El modelo propuesto está basado en las 5´S ya que esta metodología se ajusta a la estandarización y el mantenimiento, y al estar soportado en la norma NTC 5926-1 facilita en especial la comprensión del objetivo en su implementación, en la figura 18 se muestra el modelo propuesto el cual integra tres factores fundamentales para entender el ¿Qué? Y el
Cómo Se logrará mejorar el proceso, el primer factor es el Kaizen (el cambio) el segundo factor es la Norma la cual estipula claramente que elementos debe considerar el funcionamiento de los equipos del transporte vertical y el último factor son las 5´S las cuales son utilizadas para describir como se logrará la mejora en el procedimiento de mantenimiento preventivo de ascensores.

Figura 18. Figura 17 Modelo de mejora.

Fuente elaboración propia.

Por motivo de los continuos y acelerados cambios en tecnología, así como la reducción en el ciclo de vida de los elementos que componen un ascensor, la evolución en los hábitos de los usuarios o consumidores y la competencia a nivel mundial que cada día exige a las empresas mayor calidad, requiere de métodos que en forma armónica permita hacer frente a todos estos desafíos (aramburu, 2016).
Por motivo de los continuos y acelerados cambios en tecnología, así como la reducción en el ciclo de vida de los elementos que componen un ascensor, la evolución en los hábitos de los usuarios o consumidores y la competencia a nivel mundial que cada día exige a las empresas mayor calidad, requiere de métodos que en forma armónica permita hacer frente a todos estos desafíos (aramburu, 2016).

Los fabricantes de ascensores a finales del siglo XX tomaban como base las norma internacionales, las cuales debían cumplir con estándares de construcción para garantizar el buen funcionamiento y seguridad de los equipo. En apoyo de estas normas y la experiencia de compañeros y los trabajadores en el ramo de los ascensores se desarrolló la norma colombiana NTC5926-1.

Dentro de esta norma se encuentran expuestos 175 ítems, los cuales el auditor inspeccionará uno a uno los diferentes elementos y condiciones de seguridad que la norma exige. En los ítems evaluados por el auditor la empresa mantenedora del equipo debe garantizar que se encuentren instalados, en buen funcionamiento y en buenas condiciones de acuerdo al diseño original del equipo si fue instalado. Dado que por diseño original del ascensor no contaba con algunos elementos se procedió a evaluar el diagnostico trabajado en capítulo anterior para poder visualizar la necesidad de los ascensores inspeccionados y así poder realizar el modelo de mejora del proceso de Mantenimiento preventivo basado en la norma NTTC5926-1.

Es por esto que a continuación se presenta la totalidad delos ítems y los más relevantes que por diseño original los ascensores deben estar cumpliendo para su desempeño y que por tal motivo la empresa mantenedora del equipo deben garantizar en su funcionamiento. Además existen algunos puntos que la administración también debe cumplir de acuerdo a las condiciones de seguridad del edificio

4.1 MÁQUINA TRACTORA

- El freno no detiene la cabina.
- Pasadores en articulaciones del mecanismo del freno.
- Los elementos de freno no son de doble mordaza.
- Ejes de freno en mal estado.
- Las zapatas de freno están desgastadas hasta un 40%.
- La holgura entre la corona, el sin fin y/o el acople, supera 90 o de giro en la volante sin moverse la polea de tracción.
- Los muelles o resortes de freno deformados, fisurados, partidos u oxidados.
- El freno no funciona en ausencia de corriente eléctrica.
- No es posible acceder o accionar la palanca de freno, o no existe dicha palanca.
- Las zapatas de freno tienen aceite
- Polea desgastada o tallada por asentamiento de los cables de tracción, mayor a un factor de uno.
- Se encuentran uno o más cables hundidos en la polea a diferente nivel que los demás.
- Falta protección que impida la salida de cables de tracción y/o cables de compensación.
- No existe inscripción de acceso prohibido.
- No existe interruptor de parada en el cuarto de poleas.
- Cuadro de maniobra con elementos sueltos o sin fijación (contactores, relevos, tarjetas de control, regletas, borneras, temporizadores).
- Presencia de oxidación en cualquier punto del cable del regulador de velocidad.
- Cuadro de maniobra con empalmes sin aislamiento, fusibles puenteados, contactos suplementados.
- No existe interruptor general tripolar de corte de la alimentación.
- No está independiente la acometida del ascensor y la acometida del alumbrado.
- Cables con aislamiento deteriorado y/o conductores expuestos.
- Las partes móviles del cuarto de máquina (poleas de tracción, limitador de velocidad y volantes de maniobra), no están identificadas o no tienen marcas distintivas (pintadas de amarillo),
- El ascensor no cumple la verificación de la prueba de funcionamiento del limitador de velocidad.
- No actúan las cuñas del paracaídas.
- No existe o no funciona el contacto de acuñamiento, de cabina y/o de contrapeso.
- No existe o no funciona el contacto eléctrico del limitador.
- No existe paracaídas en contrapeso habiendo circulación de personas bajo el foso.
- Cable de limitador roza con elementos de la instalación del equipo y/o de la obra civil.
- Limitador inaccesible para realizar el mantenimiento e inspección.
- Limitador oxidado, sin lubricación, desplomado, desajustado, o no está anclado firmemente en al menos dos puntos de fijación.
- El paracaídas no lleva cuñas.
- Ausencia de placa de especificaciones del limitador o regulador de velocidad.

4.2 ELEVADORES ROOMLESS O SIN CUARTO DE MÁQUINAS

- Se debe verificar la posibilidad de apertura del freno de forma remota.
- En caso de apertura remota por batería se debe verificar que dicha se encuentre conectada y con niveles de carga recomendadas en la placa.
- Requerir llave de seguridad especial para la operación de rescate, se debe verificar la existencia de dicha llave.
- Apertura remota por medios mecánicos se debe verificar el estado y accionamiento de tales mecanismos como guayas, palancas o cualquier otro mecanismo que el fabricante disponga.

4.3 CABLES DE TRACCIÓN Y SUS AMARRES

- No deben existir empalmes en los cables.
- En casos de cinta de tracción, se presenta al menos una fisura, una grieta, y/o un adelgazamiento de la cubierta en 1,5 m de la cinta.
• Cables con alambres rotos según los siguientes criterios: - Los hilos rotos superan al 50% en un mismo paso del total de los hilos que conforman el torón.
• Existen más de 2 hilos rotos por torón en promedio en el tramo de un paso del cable.
• Para ascensores a tracción: Con capacidad mayor a 6 personas la tracción se realiza con menos de tres cables - Con capacidad menor a 6 personas la tracción se realiza con menos de dos cables.
• Amarres de cable de tracción en cabina y/o contrapeso desajustado suelto, carente de amarre, o en mal estado.
• Presencia de oxidación en cualquier punto del cable, tal que exista desprendimiento de material o se evidencie la destrucción paulatina de los hilos constitutivos del cable, por acción de agentes externos.
• Cable de tracción roza con elementos de la instalación del equipo y/o de la obra civil.
• Diámetro de los cables de tracción inferior al 10% de su diámetro nominal.

4.4 CONTRAPESO

• Al soporte le faltan tuercas o pasadores.
• Pesas rotas o fracturadas dentro del bastidor y o sobresaliendo fuera del bastidor.
• Existe la posibilidad de movimiento de las pesas por la ausencia de mecanismo de acuñamiento.
• El paracaídas del contrapeso actúa.
• En caso de existir poleas sobre el contrapeso, no disponen de los elementos necesarios para evitar la salida de los cables.
• Para ascensores cuyo contrapeso y cabina estén dentro del mismo pozo, el contrapeso esta guiado mediante cables guía.
4.5 CIRCUITOS ELÉCTRICOS DE SEGURIDAD (RECORRIDO POZO)

- Cable viajero y/o cordón de maniobra en mal estado, (quebrado, partido, conexiones flojas, cables desnudo, empalmado en la parte móvil).
- El interruptor de final de carrera no se recupera al bajar o subir la cabina.
- No existe o no funcionan los dispositivos de final de carrera.
- Los finales de carrera no son de apertura mecánica.
- Distancia de actuación del dispositivo eléctrico del final de carrera superior a 12 cm desde el punto de activación en los pisos superior e inferior.

4.6 HUECO DEL ASCENSOR

- Amortiguadores oxidados, fisurados, sueltos.
- No existen topes elásticos, de resorte o hidráulicos para la cabina y contrapeso. Defecto Muy Grave.
- En amortiguadores hidráulicos, el nivel de aceite está por fuera de la marca.
- Las guías de la cabina en todo su recorrido presentas mal estado de fijación a las paredes del hueco, deformaciones desalineación o falta de paralelismo.
- No se recupera el amortiguador hidráulico luego de comprimirse.
- La distancia entre órganos móviles y la parte fija no cumple las siguientes dimensiones: Distancia entre el quicio de pasillo y quicio de cabina: ≥35 mm. Distancia entre cabina y contrapeso ≤35 mm.
- No existe o no funcionan los dispositivos de final de carrera.
- Instalación eléctrica o mecánica, en contacto con ella.
- Foso con profundidad superior o igual a 1,50 m. sin escalera. En caso de tener escalera el primer peldaño no debe estar ubicado a más de 50 cm respecto al nivel de piso de la primera parada.
- Falta o no funciona un interruptor accesible desde el piso, que permita parar y mantener parado el ascensor durante las operaciones de mantenimiento o inspección en el foso.
• No tiene o no actúa el dispositivo eléctrico de seguridad en los amortiguadores hidráulicos.
• Puerta de inspección o socorro sin contacto eléctrico de seguridad, o que no funcione.
• Encontrándose la cabina en la última parada (la más alta) el contrapeso se encuentra a una distancia \(\leq \) de 15 cm con respecto al tope de sus amortiguadores.
• Distancia entre embrague mecánico de puerta de cabina y la pisadera de pasillo es menor a 6 mm.
• En ascensores con hueco compartido no existe separación del hueco de cada ascensor en el foso.

4.7 SEÑALIZACIÓN Y MANIOBRA DE LOS ELEMENTOS QUE AFECTEN LA SEGURIDAD

• En las zonas circulantes o pasillos alrededor de un pozo parcialmente abierto, existen barreras de protección con altura inferior a 2,5 m, a una distancia inferior a 50 cm de las partes móviles del ascensor.
• No existe señalización de piso en cabina.
• Cada interruptor eléctrico (Breaker) no se identifica con el circuito que protege y/o Los interruptores de protección no se identifican con su circuito de alimentación.

4.8 CIRCUITOS ELÉCTRICOS DE SEGURIDAD (EN CABINA)

• El dispositivo de parada (stop) no funciona en cabinas sin puerta.
• Equipo de alarma no es autónomo (es decir sin batería), inaudible o no funciona.
• Arranca con puertas de cabina abiertas o al abrirla no se detiene durante el funcionamiento normal.
• El dispositivo de parada (stop) se desactiva en forma involuntaria Mirilla de puerta rajada con protección (cristal armado, acrílico, malla).
• Mirilla de puerta rota con hueco.
- Mirilla suelta, con mala fijación o desajustada.
- Las hojas de puertas son de vidrio y no llevan marcas identificativas.
- La puerta de acceso deja excesivas holguras. (Esta condición se considera cumplida cuando estas holguras operativas no superan 6 mm.
- En condiciones normales de funcionamiento, las puertas de acceso no están cerradas y enclavadas sin la presencia de cabina.
- Existencia de elementos cortantes (vidrios sin pulir, aristas vivas, etc.) en puerta de acceso y recorrido sin puertas en cabina.
- Oxidación y corrosión en más de un 20 % del área del elemento en las puertas y/o marcos de acceso.
- Puertas de acceso, paneles, bisagras o marcos están deformadas y afectan el funcionamiento normal del ascensor.
- Cerraduras accesibles desde el exterior sin requerir herramienta para su apertura.
- Falta seguridad eléctrica (series) de puertas, o están puenteadas.
- Bornes o cables eléctricos mal conectados o con defectos de aislamiento en puertas.
- Los elementos enclavados no están encajados, al menos 7 mm.
- El ascensor arranca con puerta abierta.
- No funciona el sistema de reapertura (banda retráctil, foto celda, micro obstáculo, ultrasónico, etc.) de las puertas de acceso.
- Es posible abrir una puerta sin estar la cabina en la zona de desenclavamiento, sin una herramienta y el ascensor no se detiene.
- No existe piloto de presencia de cabina en puertas ciegas o visibilidad con mirilla.
- Zona de desenclavamiento superior a 35 cm por encima o por debajo del nivel de piso.
- No existe llave de apertura en la edificación o no es accesible.
- La puerta de acceso se abre sin llave especial o no puede introducirse.

4.9 CABINA Y ACCESO A LA MISMA

- Al bastidor o chasis le faltan tuercas o pasadores que afecten su rigidez.
• El techo no soporta sin deformación permanente e peso de dos personas es decir (150 kg)
• No lleva puertas en cabina (equpos antiguos que no tengan puertas en cabina deben estar provistos de un sensor de proximidad).
• Paredes de la cabina no rígidas. Para ascensores con cabina de construcción en madera se presentan zonas podridas, mal fijadas o con síntomas de defecto.
• No existen rejillas de ventilación en cabina.
• No lleva faldón guarda pies en cabina.
• Las puertas de la cabina no rígidas.
• Las hojas de vidrio, no llevan marcas identificativas.
• Puertas de cabina no retroceden frente a un obstáculo por contacto o proximidad.
• No existe o no funciona el pulsador de apertura de puertas automáticas en botonera de cabina.
• No existe o no funciona el conmutador Normal/inspección y/o no está plenamente identificado.
• Zapata y/o deslizadera de cabina y/o contrapeso en mal estado (rotas, no existentes, rozando partes metálicas sueltas o con sujeción incompleta).
• No existe placa que identifique capacidad máxima de carga en cabina (kg y/o pasajeros).
• Plataforma de cabina hecha en madera.
• Distancia entre pisadera o quicio de cabina y pisadera o quicio de piso excede 35 mm.
• Guarda escoba o zócalo en mal estado (oxidado, suelto, deteriorado, roto).
• No existe interruptor de parada encima de cabina.

4.10 MANTENIMIENTO, IDENTIFICACIÓN Y RÓTULOS

• No existe empresa encargada del mantenimiento ni conservación del aparato, haciéndose constar de un registro de mantenimiento (contrato bitácora, reporte técnico, acta de mantenimiento, etc.).
Se considera importante aclarar que dependiendo la vida útil de los elementos o el desgaste de los mismos se debe generar una oferta a la respectiva administracion o evaluar el tipo de contrato con la empresa de mantenimiento del ascensor si cubre repuestos.

A continuación se hace una relación de los ítems exigidos por ente auditor basados en la norma 5926.1 que son responsabilidad del administrador o copropiedad para la certificación del ascensor

- Filtraciones de goteras o humedades en el cuarto de máquinas o poleas.
- El alumbrado no existe, no funciona o es inferior a 200 luxes a nivel del suelo en el cuarto de poleas.
- No tiene acceso al cuarto de máquinas y/o incumplimiento la normatividad de trabajo en altura.
- El cuarto de máquinas es utilizado como bodega o para fines diferentes al funcionamiento del ascensor.
- Puerta del cuarto de máquinas sin cerradura.
- Existencia de humedades en techo, paredes y suelo de los cuartos de máquinas y poleas.
- Agua en el foso
- Instalaciones o elementos en pozo o sala de máquinas ajenas a las instalaciones propias del ascensor (gas, aire acondicionado, acueducto, telecomunicaciones, acometidas hidráulicas o eléctricas, etc.)
- No existencia de puertas en las aberturas accesibles por las personas al hueco.
- El hueco se utiliza para ventilación de otras áreas ajenas al ascensor (baños, cocinas, etc)
- Puerta de inspección o socorro con apertura hacia el interior
- Hay más de 11 metros entre dos paradas continuas sin apertura de socorro
- Cuando un ascensor queda entre pisos o en el túnel, la distancia máxima entre la pisadera de cabina y el muro es mayor a 125 mm
La iluminación de los accesos es menor de 50 lux a 1 m del piso y 1 m de la puerta de acceso para percibir la presencia de la cabina, si esta no tiene luz.

A continuación se describe el modelo de manteniendo en cada una de las actividades a realizar en el ascensor, aplicando metodología 5S.

Ya definida la metodología, se trabajará en las técnicas basada en 5S (seleccionar, ordenar, limpiar, estandarizar y mantener) y con la recolección de la información de las condiciones actuales de los ascensores, se podrá evidenciar las necesidades que existen en la mayoría de los equipos para dar cumplimiento a la norma, es por esto que se desarrolla un procedimiento estándar a las diferentes tecnologías con el fin de poder cubrir los requerimientos exigidos, especialmente aumentar el índice de seguridad de los equipos.

De acuerdo a la experiencia que se tiene en el sector del transporte vertical y estudio obtenido se priorizaron los puntos más relevantes en la inspección de los ascensores cuando se realizan auditorias de seguridad enfocadas en la norma NTC5926-1; es por esto que dentro del estudio obtenido se evidencia que las partes de las cuales por diseño original algunos ascensores en el momento no cuenta y se hace actualmente necesario contar con estas adaptaciones de elementos de seguridad para poder cumplir con la norma NTC5926-1. De esta forma llegar a garantizar la seguridad de los usuarios y técnicos que desarrollan labores de mantenimiento de los ascensores; es por esto que a continuación se desarrolla un modelo el cual está enfocado en los puntos más relevantes en seguridad y los cuales debe garantizar la empresa mantenedora del ascensor para poder cumplir con la norma NTC5926-1.

Dentro del MODELO DE MEJORA DEL PROCESO DE MANTENIMIENTO PREVENTIVO DE ASCENSORES BASADO EN LA NORMA NTC5926-1 se podrán garantizar las buenas condiciones, las necesidades del equipo y los requerimientos de las condiciones del edificio tomando como base la metodología 5S, con el fin de garantizar una muy buena mejora hacia el modelo; el técnico de mantenimiento identificará, organizará,
limpiará, mantendrá y reportará bajo esta disciplina para garantizar las condiciones del ascensor con el fin de certificar ante un ente auditor las buenas condiciones del ascensor bajo la norma NTC5926-1. Por tanto a continuación se describe el modelo y su aplicación en cada uno de los subsistemas de mayor relevancia previamente definidos.

Máquina Tractora

La máquina de tracción es uno de los principales componentes del elevador, se encuentra ubicado en el cuarto de máquinas y está compuesto por la máquina, el freno y el motor. Como puntos relevantes la norma exige que la palanca del freno este plenamente identificada, posea guarda poleas con guarda cables, tenga un interruptor de emergencia ubicado cerca de los elementos en movimiento, posea protecciones eléctricas en las conexiones y circuitos de protección para el accionamiento del freno, estos puntos deberán ser revisados en cada rutina de mantenimiento, en la tabla 14 se describe las actividades propuestas para este subsistema.

Tabla 15 Máquina Tractora.

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>MÁQUINA TRACTORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>El freno detiene la cabina</td>
<td></td>
</tr>
<tr>
<td>Pasadores de freno en buenas condiciones</td>
<td></td>
</tr>
<tr>
<td>Resortes y bandas de freno en buen estado</td>
<td></td>
</tr>
<tr>
<td>Se encuentra etiqueta de la palanca de freno, para mover el ascensor.</td>
<td></td>
</tr>
<tr>
<td>Inspeccione que las zapatas de freno no estén desgastadas hasta un 40%</td>
<td></td>
</tr>
<tr>
<td>La polea no se encuentre desgastada o tallada por asentamiento de los cables de tracción, mayor a un factor de deslizamiento de uno</td>
<td></td>
</tr>
<tr>
<td>Uno o más cables hundidos en la polea a diferente nivel que los demás.</td>
<td></td>
</tr>
<tr>
<td>Falta protección que impida la salida de cables de tracción y/o cables de compensación y en polea desviadora</td>
<td></td>
</tr>
<tr>
<td>Existe interruptor de parada en el cuarto de poleas</td>
<td></td>
</tr>
<tr>
<td>Nivel de aceite de la maquina</td>
<td></td>
</tr>
<tr>
<td>ORGANIZAR</td>
<td>Uno o más cables hundidos en la polea a diferente nivel que los demás.</td>
</tr>
<tr>
<td></td>
<td>ruidos y vibración de maquina</td>
</tr>
<tr>
<td></td>
<td>Reporte presencia de oxidación en cualquier punto del cable, tal que exista desprendimiento de material</td>
</tr>
<tr>
<td></td>
<td>Reporte cables con alambres rotos</td>
</tr>
<tr>
<td></td>
<td>En casos de cinta de tracción, si se presenta al menos una fisura, una grieta, y/o un adelgazamiento de la cubierta en 1,5 m de la cinta reporte</td>
</tr>
<tr>
<td></td>
<td>Marcas en cables de tracción y/o gobernador para identificar la zona de des enclavamiento, para maniobrar evacuación.</td>
</tr>
<tr>
<td></td>
<td>Reporte si es inferior el cable de tracción el 10% de su diámetro nominal</td>
</tr>
<tr>
<td>LIMPIAR</td>
<td>resortes de freno en buenas condiciones</td>
</tr>
<tr>
<td></td>
<td>bandas de freno ajustados a las medidas de acuerdo a la maquina tractora</td>
</tr>
<tr>
<td></td>
<td>protección de polea tractora bien instalada</td>
</tr>
<tr>
<td>MANTENER</td>
<td>Maquina tractora</td>
</tr>
<tr>
<td></td>
<td>Bancada de maquina tractora</td>
</tr>
<tr>
<td></td>
<td>caja de conexiones</td>
</tr>
<tr>
<td></td>
<td>Pasadores en articulaciones del mecanismo del freno</td>
</tr>
<tr>
<td></td>
<td>resortes del freno</td>
</tr>
<tr>
<td></td>
<td>Ajuste de freno en buenas condiciones</td>
</tr>
<tr>
<td></td>
<td>Conexiones de freno y maquina en buenas condiciones</td>
</tr>
<tr>
<td></td>
<td>Nivel de aceite de la maquina</td>
</tr>
<tr>
<td></td>
<td>Buenas condiciones de aseo y pintura</td>
</tr>
<tr>
<td></td>
<td>Marcar cables de tracción en zona de evacuación</td>
</tr>
<tr>
<td></td>
<td>Auto lubricación de cables de tracción</td>
</tr>
<tr>
<td>DISCIPLINA</td>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</td>
</tr>
<tr>
<td></td>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.</td>
</tr>
</tbody>
</table>
Cuarto de máquinas y poleas

En la sección de cuarto de máquinas y poleas se evalúan condiciones de seguridad resaltadas en la norma de trabajo en alturas, condiciones de luminosidad del lugar de trabajo, además deben existir etiquetas y señalización que indique las partes en movimiento, también se evalúan condiciones de humedad o la existencia de circuitos o elementos ajenos al ascensor los cuales deben ser verificados periódicamente para mantener las condiciones adecuadas de trabajo y el máximo nivel de seguridad posible.

Tabla 16 Cuarto de máquinas y poleas

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>CUARTO DE MÁQUINAS Y POLEAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tiene acceso adecuado al cuarto de máquinas por incumplimiento a la normatividad de trabajo en altura.</td>
</tr>
<tr>
<td></td>
<td>El cuarto de máquinas es utilizado como bodega o para fines diferentes al funcionamiento del ascensor</td>
</tr>
<tr>
<td></td>
<td>La puerta del cuarto de máquinas sin cerradura</td>
</tr>
<tr>
<td></td>
<td>Goteras o humedades en el cuarto de máquinas o poleas.</td>
</tr>
<tr>
<td></td>
<td>Aviso en cuarto de máquinas si no existe inscripción de acceso prohibido</td>
</tr>
<tr>
<td></td>
<td>El alumbrado no existe, no funciona o es inferior a 200 luxes a nivel del suelo en el cuarto de máquinas o de 100 luxes en el cuarto de poleas.</td>
</tr>
<tr>
<td></td>
<td>Hay existencia de humedades en techo, paredes y suelo de los cuartos de máquinas y poleas.</td>
</tr>
<tr>
<td></td>
<td>Insumos se encuentran identificados</td>
</tr>
<tr>
<td></td>
<td>Insumos se encuentran en su respectivo sitio de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>Falta detector de inversión o ausencia de fase</td>
</tr>
<tr>
<td></td>
<td>Interruptor general tripolar de corte de la alimentación.</td>
</tr>
<tr>
<td></td>
<td>Está independiente la acometida del ascensor y la acometida del</td>
</tr>
<tr>
<td>ORGANIZAR</td>
<td>LIMPIAR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>alumbrado.</td>
<td>Limpie y Pinte las partes móviles del cuarto de máquina (poleas de</td>
</tr>
<tr>
<td>Insumos se encuentran identificados</td>
<td>tracción, de desvío, de limitador de velocidad y volantes de maniobra)</td>
</tr>
<tr>
<td>Insumos se encuentran en su respectivo sitio de almacenamiento</td>
<td></td>
</tr>
<tr>
<td>Ajuste y figure en Control de maniobra los elementos sueltos o sin</td>
<td>Limpie y ajuste contactos de relevos de maniobra y potencia</td>
</tr>
<tr>
<td>fijación (contactores, relevos, tarjetas de control, regletas o borneras,</td>
<td></td>
</tr>
<tr>
<td>temporizadores</td>
<td></td>
</tr>
<tr>
<td>Cambie y organice en Control de maniobra aquellos cables que se</td>
<td></td>
</tr>
<tr>
<td>encuentren con empalmes sin aislamiento, fusibles puenteados,</td>
<td></td>
</tr>
<tr>
<td>contactos, etc.</td>
<td></td>
</tr>
<tr>
<td>Elementos que no corresponden al ascensor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANTENER</th>
<th>DISCIPLINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuste conexiones en control de maniobra</td>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten</td>
</tr>
<tr>
<td>Verifíque entrada y salida de voltaje en transformador</td>
<td>adaptar a la NORMA 5926-1</td>
</tr>
<tr>
<td>Figure cableado en control</td>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del</td>
</tr>
<tr>
<td>En equipos electromecánicos realice rutina de mantenimiento en los</td>
<td>equipo.</td>
</tr>
<tr>
<td>relevos de maniobra y de potencia</td>
<td></td>
</tr>
<tr>
<td>Garantice los elementos en control en buenas condiciones</td>
<td></td>
</tr>
<tr>
<td>Realice cambio de los repuestos que amerite en control</td>
<td></td>
</tr>
</tbody>
</table>

Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.
El paracaídas o limitador de velocidad es la principal seguridad de los elevadores, es un sistema de detención automática que impide que la cabina exceda la velocidad nominal o de contrato, en caso de que el sistema actúe tanto mecánica como eléctricamente para detener la cabina e impedir que se pueda caer en el foso del ascensor, este sistema es la garantía de que un elevador no se cae aunque cortaran sus cables de tracción y fue el sistema que permitió la existencia de ascensores para pasajeros; por ende la importancia tener un mantenimiento altamente efectivo en este sistema como lo estipula la norma.

Tabla 17 Paracaídas y limitador de velocidad

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>PARACAÍDAS Y LIMITADOR DE VELOCIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si hay presencia de oxidación en cualquier punto del cable del regulador de velocidad y/o cables de compensación.</td>
<td></td>
</tr>
<tr>
<td>Si el Cables del limitador es inferior a 6 mm de diámetro.</td>
<td></td>
</tr>
<tr>
<td>Si hay cables con alambres rotos superior a 2 hilos en un metro en el mismo torón.</td>
<td></td>
</tr>
<tr>
<td>Si existe o no funciona el contacto eléctrico del limitador.</td>
<td></td>
</tr>
<tr>
<td>Existe paracaídas en contrapeso habiendo circulación de personas bajo el foso.</td>
<td></td>
</tr>
<tr>
<td>Existe paracaídas en contrapeso habiendo circulación de personas bajo el foso.</td>
<td></td>
</tr>
<tr>
<td>El Limitador no es accesible para realizar el mantenimiento e inspección.</td>
<td></td>
</tr>
<tr>
<td>En equipos hidráulicos con tracción indirecta que no tengan sistema de paracaídas en cabina, no actúa la válvula de paracaídas en vacío en el</td>
<td></td>
</tr>
<tr>
<td>pistón</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>El limitador presenta oxidado, sin lubricación, desplomado, desajustado., o no está anclado firmemente en al menos dos puntos de fijación</td>
<td></td>
</tr>
<tr>
<td>El limitador en el hueco del ascensor no existe la posibilidad de maniobrar o desaplicar desde el exterior</td>
<td></td>
</tr>
<tr>
<td>La ausencia de placa de especificaciones del limitador o regulador de velocidad, en donde se estipule cual es la velocidad nominal y la velocidad de actuación.</td>
<td></td>
</tr>
<tr>
<td>Falta o no funciona el dispositivo de control de rotura o aflojamiento del cable de limitador</td>
<td></td>
</tr>
<tr>
<td>ORGANIZAR</td>
<td></td>
</tr>
<tr>
<td>Figurar cableado de regulador</td>
<td></td>
</tr>
<tr>
<td>Elementos ajenos al ascensor</td>
<td></td>
</tr>
<tr>
<td>cable de regulador</td>
<td></td>
</tr>
<tr>
<td>LIMPIAR</td>
<td></td>
</tr>
<tr>
<td>Limpiar y lubricar partes móviles de regulador</td>
<td></td>
</tr>
<tr>
<td>regulador de velocidad</td>
<td></td>
</tr>
<tr>
<td>sistema de bloque de seguro</td>
<td></td>
</tr>
<tr>
<td>pesa de tensión de regulador de velocidad</td>
<td></td>
</tr>
<tr>
<td>Mordazas de bloque de seguro</td>
<td></td>
</tr>
<tr>
<td>MANTENER</td>
<td></td>
</tr>
<tr>
<td>Comprobar micro eléctrico de regulador de velocidad</td>
<td></td>
</tr>
<tr>
<td>lubricar elementos móviles de regulador de velocidad</td>
<td></td>
</tr>
<tr>
<td>garantizar actuación de regulador</td>
<td></td>
</tr>
<tr>
<td>nivelar y plomar pesa de regulador de velocidad</td>
<td></td>
</tr>
<tr>
<td>ajustar micro de pesa de regulador</td>
<td></td>
</tr>
<tr>
<td>Garantizar aseguramiento del regulador</td>
<td></td>
</tr>
<tr>
<td>DISCIPLINA</td>
<td></td>
</tr>
<tr>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</td>
<td></td>
</tr>
<tr>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo</td>
<td></td>
</tr>
</tbody>
</table>
Ascensores sin cuarto de máquinas (ROOMLESS)

Los elevadores sin cuarto de máquinas son modelos relativamente nuevos, los primeros de ellos fueron instalados en Colombia solo hasta la última década, y ofrece beneficios para las construcciones nuevas ya que reduce el espacio requerido para las partes del equipo y así mismo el mantenimiento es menor, es una tendencia altamente utilizada en edificios residenciales modernos de hasta 15 paradas en promedio, manejan estándares de seguridad tan rigurosos como los elevadores convencionales sin embargo su principal limitante es la altura y la velocidad de los equipos, el mantenimiento es muy similar a los demás equipos a diferencia que la máquina y el control principal están ubicados dentro del foso del ascensor sin embargo las rutinas se efectúan en su totalidad.

Tabla 18 Ascensores sin cuarto de máquinas (ROOMLESS)

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>ASCENSORES SIN CUARO DE MAQUINAS (ROOMLESS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aviso en cuarto de máquinas si no existe inscripción de acceso prohibido</td>
</tr>
<tr>
<td></td>
<td>El alumbrado no existe, no funciona o es inferior a 200 luxes a nivel del suelo en el cuarto de máquinas o de 100 luxes en el cuarto de poleas.</td>
</tr>
<tr>
<td></td>
<td>Hay existencia de humedades en techo, paredes y suelo de los cuartos de máquinas y poleas.</td>
</tr>
<tr>
<td></td>
<td>Insumos se encuentran identificados</td>
</tr>
<tr>
<td></td>
<td>Insumos se encuentran en su respectivo sitio de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>Falta detector de inversión o ausencia de fase</td>
</tr>
<tr>
<td></td>
<td>Interruptor general tripolar de corte de la alimentación.</td>
</tr>
<tr>
<td></td>
<td>Está independiente la acometida del ascensor y la acometida del alumbrado.</td>
</tr>
<tr>
<td></td>
<td>Demarcaciones de los breaker de alumbrados y del ascensor</td>
</tr>
<tr>
<td></td>
<td>Actuación de sistema de rescate en buenas</td>
</tr>
<tr>
<td>ORGANIZAR</td>
<td>LIMPIAR</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Baterías del sistema de rescate en buenas condiciones</td>
<td>Limpie y Pinte las partes móviles del cuarto de máquina (poleas de tracción, de desvío, de limitador de velocidad y volantes de maniobra)</td>
</tr>
<tr>
<td>Buenas condiciones del sistema eléctrico del regulador de velocidad</td>
<td>Control de maniobra del ascensor</td>
</tr>
<tr>
<td>Insumos se encuentran identificados</td>
<td>Limpie y ajuste contactos de relevos de maniobra y potencia</td>
</tr>
<tr>
<td>Insumos se encuentran en su respectivo sitio de almacenamiento</td>
<td>Ventiladores de control</td>
</tr>
<tr>
<td>Ajuste y figure en Control los elementos sueltos o sin fijación (contactores, relevos, tarjetas de control, regletas o borneras, temporizadores)</td>
<td>Cableado de control</td>
</tr>
<tr>
<td>Cambie y organice en Control aquellos cables que se encuentren con empalmes sin aislamiento, fusibles puenteados, contactos, etc.</td>
<td>Limpieza de resistencias de control</td>
</tr>
<tr>
<td>Elementos que no corresponden al ascensor</td>
<td>Limpie sobre recorrido del pozo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

81
relevos de maniobra y de potencia
Garantice los elementos en control en buenas condiciones
Realice cambio de los repuestos que amerite en control

<table>
<thead>
<tr>
<th>DISCIPLINA</th>
<th>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Contrapeso
Entendiendo el elevador como una balanza entre cabina y contrapeso, este último es un elemento de gran importancia ya que compensa las cargas a las cuales se somete la máquina de manera que se reduzca el esfuerzo en el motor, dependiendo del tipo de amarre que tenga el equipo varía la configuración del contrapeso, sin embargo el mantenimiento de centra en limpieza y lubricación, como también, mantener las zapatas o deslizaderas en perfectas condiciones para garantizar que el movimiento dentro del recorrido sea confortable silencioso y seguro.

Tabla 19 Contrapeso

<table>
<thead>
<tr>
<th>CONTRAPESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buenas condiciones de los terminales de tracción (tuercas, resortes, pasadores, cuñas, etc…)</td>
</tr>
<tr>
<td>El estado de las pesas (rotas, fracturadas o sobresaliendo fuera del chasis)</td>
</tr>
<tr>
<td>Existe la posibilidad de movimiento de las pesas por la ausencia de mecanismo de acuñamiento.</td>
</tr>
<tr>
<td>IDENTIFICA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ORGANIZAR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LIMPIAR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MANTENER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ajuste tornillería de chasis
Instale lubricante a tarros auto lubricadores de guías de contrapeso
ajuste mecánicamente porta zapatas
pinte pesas
ajuste bloque de seguro cuando aplica en contrapeso
lubrique piezas móviles del bloque del seguro

| DISCIPLINA | Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Circuitos eléctricos de pozo y foso

Los circuitos eléctricos en foso y pozo constituyen la principal fuente de información para el procesador de los elevadores, ya que transmiten señales para indicar dirección paradas y mantiene el monitoreo constante de las seguridades como limites finales, interruptores de seguridad, comandos de maniobra manual y datos de apertura y cierre de puertas, en este subsistema el mantenimiento es riguroso y exige la realización de pruebas de seguridad en todas y cada una de las intervenciones que se le haga al equipo a lo largo de su vida útil.

Tabla 20 Circuitos eléctricos de pozo y foso

<table>
<thead>
<tr>
<th>CIRCUITOS ELÉCTRICOS DE POZO Y FOSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortiguadores oxidados, fisurados, sueltos.</td>
</tr>
<tr>
<td>Existen topes elásticos, de resorte o hidráulicos para la cabina y contrapeso.</td>
</tr>
<tr>
<td>Amortiguadores hidráulicos, el nivel de aceite está por fuera de la marca.</td>
</tr>
<tr>
<td>IDENTIFICA</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| **ORGANIZAR** | La puerta de inspección o socorro se encuentra sin cerradura
Ascensores con hueco compartido no existe separación del hueco de cada ascensor en el foso. |
| **LIMPIAR** | Insumos se encuentran identificados
Insumos se encuentran en su respectivo sitio de almacenamiento
Ajuste y figure los elementos sueltos o sin fijación
Cableado de maniobra y potencia
Elementos que no corresponden al ascensor |
| **MANTENER** | Los Amortiguadores deben mantener fijos y sin presencia de oxida
El nivel de aceite de los Amortiguadores hidráulicos debe siempre ser el adecuado
Guías de la cabina en todo su recorrido deben estar con buena fijación a las paredes del hueco, sin presentar desalineación.
La distancia entre órganos móviles y la parte fija
La Distancia entre el quicio de pasillo y quicio de cabina (30 mm)
La Distancia entre cabina y contrapeso
Sin Agua en el foso
Garantizar las seguridades de sobre recorrido y foso que estén funcionando.
Foso y pozo sin elementos ajenos al ascensor
Distancia entre embrague mecánico de puerta de cabina y la pisadera de pasillo no debe ser menor a 6 mm. |
| **LIMPIAR** | Amortiguadores oxidados, fisurados o sueltos.
pesa de regulador de velocidad
escalera y elementos de seguridad de foso
Piso de foso. Evitar caída de aceite en piso
Anclajes de guías en foso
Limpie sobre recorrido de pozo (anclajes, guías y elementos de seguridad) |
| **MANTENER** | Reporte a su supervisor las condiciones a reparar o que se necesiten |
DISCIPLINA
adaptar a la NORMA 5926-1
Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.

Fuente: Elaboración propia

Puertas de hall

Las puertas de piso constituyen un elemento clave en el funcionamiento de los elevadores ya que son elementos que tienen movimiento frecuentemente, además están en contacto directo con el usuario, en este sistema se encuentran seguridades eléctricas y mecánicas, y es allí donde más se presentan fallas en la operación de los elevadores, también las rutinas de mantenimiento se diseñan para tener mayor frecuencia en la revisión y ajuste de puertas de piso y cabina. La norma estipula la verificación de todas y cada una de las puertas en la inspección de seguridad para garantizar la seguridad de los usuarios.

Tabla 21 Puertas de hall

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>PUERTAS DE HALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>La mirilla de puerta dañada con protección (cristal armado, acrílico, malla)</td>
<td></td>
</tr>
<tr>
<td>Las hojas de puertas son de vidrio y no llevan marcas identificativas.</td>
<td></td>
</tr>
<tr>
<td>La puerta de acceso deja excesivas holguras. (Esta condición se considera cumplida cuando estas holguras operativas no superan 6 mm)</td>
<td></td>
</tr>
<tr>
<td>Las puertas de acceso no están cerradas y enclavadas sin la presencia de cabina</td>
<td></td>
</tr>
<tr>
<td>Existencia de elementos cortantes (vidrios sin pulir, aristas vivas, etc.) en puerta de acceso y recorrido sin puertas en cabina.</td>
<td></td>
</tr>
<tr>
<td>Oxidación y corrosión en más de un 20 % del área del elemento en las puertas y/o marcos de acceso</td>
<td></td>
</tr>
<tr>
<td>Puertas de acceso, paneles, bisagras o marcos están deformadas y afectan el funcionamiento normal del ascensor</td>
<td></td>
</tr>
<tr>
<td>Cerraduras accesibles desde el exterior sin requerir herramienta para su apertura.</td>
<td></td>
</tr>
<tr>
<td>La serie de seguridad eléctrica de puertas, garantice que no se encuentren puenteadas.</td>
<td></td>
</tr>
<tr>
<td>Bornes o cables eléctricos mal conectados o con defectos de aislamiento en puertas</td>
<td></td>
</tr>
<tr>
<td>El ascensor arranca con puerta abierta.</td>
<td></td>
</tr>
<tr>
<td>Funcionamiento del sistema de reapertura de las puertas de acceso. (Banda retráctil, photocelda, micro obstáculo, etc.)</td>
<td></td>
</tr>
<tr>
<td>Es posible abrir una puerta sin estar la cabina en la zona de desenclavamiento, sin una herramienta y el ascensor no se detiene.</td>
<td></td>
</tr>
<tr>
<td>Existe piloto de presencia de cabina en puertas ciegas o visibilidad con mirilla.</td>
<td></td>
</tr>
<tr>
<td>Zona de desenclavamiento superior a 35 cm por encima o por debajo del nivel de piso</td>
<td></td>
</tr>
<tr>
<td>Existe llave de apertura en la edificación</td>
<td></td>
</tr>
<tr>
<td>La puerta de acceso se abre sin llave especial o no puede introducirse.</td>
<td></td>
</tr>
<tr>
<td>Las cerraduras se pueden abrir desde el interior del hueco sin necesidad de llave</td>
<td></td>
</tr>
<tr>
<td>La iluminación de los accesos es menor de 50 lux a 1 m del piso y 1 m de la puerta de acceso para percibir la presencia de la cabina.</td>
<td></td>
</tr>
<tr>
<td>Puertas plomadas y ajustadas</td>
<td></td>
</tr>
<tr>
<td>Distancia entre puertas y marcos no superior 6 mm</td>
<td></td>
</tr>
<tr>
<td>Cabeceros completos y en buenas condiciones (Guayas, tornillos golletes, patines contactos, etc...)</td>
<td></td>
</tr>
<tr>
<td>Buena fijación de cabeceros y marcos</td>
<td></td>
</tr>
</tbody>
</table>

<p>| ORGANIZAR |
| Buenas condiciones de puertas |
| Insumos se encuentran en su respectivo sitio de almacenamiento |
| Ajuste y figure los elementos sueltos o sin fijación |
| Cableado de maniobra en buenas condiciones |</p>
<table>
<thead>
<tr>
<th>LIMPIAR</th>
<th>Elementos que no correspondan al ascensor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limpiar cabeceros de puertas</td>
</tr>
<tr>
<td></td>
<td>Garantizar los quicios limpios</td>
</tr>
<tr>
<td></td>
<td>Limpiar componentes de cabeceros. (Rolletes, guayas, excéntricas, corredera, ganchos, etc...)</td>
</tr>
<tr>
<td></td>
<td>limpie contactos y cerraduras de puertas</td>
</tr>
<tr>
<td></td>
<td>Limpieza de puertas de hall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANTENER</th>
<th>La mirilla de puerta en buenas condiciones (cristal armado, acrílico, malla)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Las hojas de puertas de vidrio mantener identificadas. En buenas condiciones</td>
</tr>
<tr>
<td></td>
<td>La puerta de acceso no supera 6 mm entre postes y estas.</td>
</tr>
<tr>
<td></td>
<td>Garantizar enclavamiento de las puertas</td>
</tr>
<tr>
<td></td>
<td>Existencia de elementos cortantes (vidrios sin pulir, aristas vivas, etc.) en puerta de acceso y recorrido sin puertas en cabina.</td>
</tr>
<tr>
<td></td>
<td>Evitar Oxidación y corrosión en más de un 20 % del área del elemento en las puertas y/o marcos de acceso</td>
</tr>
<tr>
<td></td>
<td>Cerraduras accesibles desde el exterior sin requerir herramienta para su apertura.</td>
</tr>
<tr>
<td></td>
<td>Garantice que no se encuentren puenteadas la serie de seguridad eléctrica de puertas</td>
</tr>
<tr>
<td></td>
<td>Bornes o cables eléctricos mal conectados o con defectos de aislamiento en puertas</td>
</tr>
<tr>
<td></td>
<td>Buen funcionamiento del sistema de reapertura de las puertas de acceso. (Banda retráctil, fotocelda, micro obstáculo, etc.)</td>
</tr>
<tr>
<td></td>
<td>Ajuste mecánicamente las Puertas. Garantice su muy buen funcionamiento</td>
</tr>
<tr>
<td></td>
<td>Cabeceros completos y en buenas condiciones (Guayas, tornillos golletes, patines contactos, etc...)</td>
</tr>
<tr>
<td></td>
<td>Buena fijación de cabeceros y marcos</td>
</tr>
<tr>
<td>DISCIPLINA</td>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

Tabla 22 Cabina

<table>
<thead>
<tr>
<th>IDENTIFICA</th>
<th>CABINA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El bastidor o chasis le faltan tuercas o pasadores que afecten su rigidez.</td>
</tr>
<tr>
<td></td>
<td>El techo no soporta sin deformación permanente el peso de dos personas es decir (150 kg)</td>
</tr>
<tr>
<td></td>
<td>Lleva puertas en cabina (equipos antiguos que no tengan puertas en cabina deben estar provistos de un sensor de proximidad)</td>
</tr>
<tr>
<td></td>
<td>Paredes de la cabina no rígidas. Para ascensores con cabina de construcción en madera se presentan zonas podridas, mal fijadas.</td>
</tr>
<tr>
<td></td>
<td>Existen rejillas de ventilación</td>
</tr>
<tr>
<td></td>
<td>Faldón guarda pies en cabina</td>
</tr>
<tr>
<td></td>
<td>Las puertas de la cabina no rígidas</td>
</tr>
<tr>
<td></td>
<td>Existe o no funciona el dispositivo de sobrecarga</td>
</tr>
<tr>
<td></td>
<td>Puertas de cabina no retroceden frente a un obstáculo por contacto o proximidad.</td>
</tr>
<tr>
<td></td>
<td>Existe o no funciona el pulsador de apertura de puertas automáticas en botonera de cabina</td>
</tr>
<tr>
<td></td>
<td>Existe o no funciona el conmutador Normal/inspección y/o no está plenamente identificado.</td>
</tr>
<tr>
<td></td>
<td>Zapatas o deslizaderas de cabina y contrapeso en mal estado (rotas, no existentes, rozando partes metálicas sueltas o con sujeción incompleta)</td>
</tr>
<tr>
<td></td>
<td>Placa que identifique capacidad máxima de carga en cabina (kg y/o</td>
</tr>
<tr>
<td>pasajeros).</td>
<td></td>
</tr>
<tr>
<td>Distancia entre pisadera (quicio) de cabina y pisadera (quicio) de piso excede 35 mm</td>
<td></td>
</tr>
<tr>
<td>Hueco parcialmente abierto no existe una barrera de protección encima de cabina. (Protección del personal de mantenimiento)</td>
<td></td>
</tr>
<tr>
<td>Existe señalización de piso en cabina.</td>
<td></td>
</tr>
<tr>
<td>Demarcación en cada interruptor eléctrico (Breaker) que no se identifica con el circuito que protege</td>
<td></td>
</tr>
<tr>
<td>Dispositivo de parada (stop) no funciona en cabinas sin puertas</td>
<td></td>
</tr>
<tr>
<td>Equipo de alarma no es autónomo (sin batería), inaudible o no funciona</td>
<td></td>
</tr>
<tr>
<td>Existe o no funciona el intercomunicador</td>
<td></td>
</tr>
<tr>
<td>Los dispositivos eléctricos de seguridad de parada de emergencia no son accesibles</td>
<td></td>
</tr>
<tr>
<td>El dispositivo de parada (stop) se desactiva en forma involuntaria</td>
<td></td>
</tr>
<tr>
<td>Elementos de operador de cabina en buenas condiciones</td>
<td></td>
</tr>
<tr>
<td>El ascensor arranca con puertas de cabina abiertas o al abrirla no se detiene durante el funcionamiento normal</td>
<td></td>
</tr>
</tbody>
</table>

| ORGANIZAR |
| Buenas condiciones en techo de cabina |
| Insumos se encuentran en su respectivo sitio de almacenamiento |
| Ajuste y figure los elementos sueltos o sin fijación |
| Cableado de maniobra y potencia en buenas condiciones |
| Elementos que no correspondan al ascensor |

<p>| LIMPIAR |

| Limpieza del bastidor o chasis |

| Techo de cabina sin aceite y limpio |

| Limpieza de puertas y quicios de cabina |

| Garantizar limpieza y lubricación de operador de puertas de cabina |

| Garantizar antenas limpias |

| Limpieza y lubricación de zapatas de cabina |

| Limpieza y lubricación debajo de cabina |

| El bastidor o chasis con tuercas o pasadores completos y ajustados. |</p>
<table>
<thead>
<tr>
<th>MANTENER</th>
<th>DISCIPLINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuste mecánico de puerta de cabina</td>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</td>
</tr>
<tr>
<td>Ajuste mecánico y eléctrico de operador de puertas.</td>
<td></td>
</tr>
<tr>
<td>Ajuste de zapatas de cabina en buenas condiciones</td>
<td></td>
</tr>
<tr>
<td>Garantice distancia entre quicio de cabina y quicios de hall (300 mm)</td>
<td></td>
</tr>
<tr>
<td>Lubricar partes móviles del operador</td>
<td></td>
</tr>
<tr>
<td>Elementos de operador de cabina en buenas condiciones. (Banda, contactos, guaya, cables, patines, corredera, etc...)</td>
<td></td>
</tr>
<tr>
<td>El ascensor arranca con puertas de cabina abiertas o al abrirla no se detiene durante el funcionamiento normal</td>
<td></td>
</tr>
<tr>
<td>Ajuste de conexiones eléctricas en caja interface de techo de cabina</td>
<td></td>
</tr>
<tr>
<td>Reporte a su supervisor las condiciones a reparar o que se necesiten adaptar a la NORMA 5926-1</td>
<td></td>
</tr>
<tr>
<td>Continúe con los periodos establecidos de mantenimiento en cartilla del equipo.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Después de desarrollar todos los ajustes pertinentes del equipo y al realizar el cierre de mantenimiento se debe hacer un informe de los requerimientos que se deben hacer a los equipos para poder quedarse actualizados con la norma. Este informe debe ir por escrito informando al cliente y al supervisor, con el fin de poder realizar una solicitud de compra de los elementos que hagan falta de los ascensores.

Se debe desarrollar los trabajos antes expuestos para tener cumplimiento por parte de la compañía de garantizar que los trabajos que le competen a la organización se encuentren en buenas condiciones sin generar inconformidades en las auditorias expuestas por las empresas reguladoras del Instituto Distrital de Gestión de Riesgos (IDIGER).
Con la recolección de datos y al poder identificar las necesidades de cada ascensor para poder cumplir con la exigido por la norma 5926-1, se logró definir los elementos requeridos y poder trabajar en un plan de oferta hacia los clientes. Debido al diseño original de los equipos, los contratos actuales de las compañías no cubren estas adaptaciones o ajustes, motivo por el cual con la información ya recolectada se procederá con el departamento comercial a realizar una oferta a cada uno de los clientes para poder ir minimizando los puntos que exige la norma y con el nuevo procedimiento en el mantenimiento preventivo poder llegar a un equipo que se pueda certificar y poder garantizar a los usuarios un equipo confiable y seguro.
5. ANÁLISIS DE COSTOS

5.1 Costos de mano de obra

Para poder desarrollar este proyecto se contó con personal técnico capacitado en el ramo de ascensores y conocimiento de la norma., con el fin de hacer el levantamiento de la información de las condiciones actuales de los ascensores. Este levantamiento de información se desarrolló con 5 técnicos electromecánicos y 2 administrativos durante un periodo de tres meses

Tabla 23. Costo mano de obra mensual

<table>
<thead>
<tr>
<th>PERSONAL</th>
<th>CANTIDAD</th>
<th>SUELDO MENSUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnico electromecánico</td>
<td>5</td>
<td>2.000.000</td>
</tr>
<tr>
<td>Técnico administrativo</td>
<td>2</td>
<td>3.000.000</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

5.2 Costo de capacitación

Con el fin de poder desarrollar personal competente se debe realizar capacitación técnica en ascensores, trabajo en alturas y conocimiento de la norma 5926-1. Sabemos que la tecnología de los ascensores, son equipos los cuales tienen conocimiento técnico personal que ha trabajado en el medio. Se hace necesario desarrollar personal capacitado para que asistan al desarrollo de estas actividades y sabemos la importancia que tiene la parte de seguridad personal debido a la alta peligrosidad que tiene maniobrar un ascensor.
5.3 Beneficios

- En inspección de los ascensores con el nuevo modelo de mejora en el proceso de mantenimiento preventivo se podrá garantizar que todos los elementos eléctricos y mecánicos se encuentran en buen funcionamiento garantizando la seguridad de los usuarios.

- Se tendrá total confiabilidad de los ascensores los cuales se encuentren certificados bajos la norma 5926-1, dando tranquilidad a todos los usuarios que utilicen este servicio. Las administraciones evitaran demandas o sanciones ante la copropiedad.

- Los técnicos del servicio de mantenimiento preventivo y correctivo de los equipos estarán trabajando con seguridad.

- Con la nueva metodología adaptada al modelo de mantenimiento preventivo se podrá garantizar las buenas condiciones de los ascensores, se mejorara la productividad, se reducirán los accidentes y mejoraran los tiempos de atención de mantenimiento de los ascensores. La imagen ante los clientes será positiva ante el mejor desempeño de los equipos.
6. CONCLUSIONES.

- La aplicación de la herramienta de las 5´s en los procesos de mantenimiento preventivo de ascensores ha sido de gran ayuda ya que al tener elementos en su modelo como la estandarización, organización y seguimiento concuerda y está altamente emparentado con el objetivo principal de la norma NTC5926-1 que es brindar mayor seguridad a todas las personas que interactúan con ascensores, usuarios y mantenenedores, y llevar los equipos a un estándar de funcionalidad y seguridad que garantice el correcto funcionamiento de los mismos. Como factor clave se desea resaltar el elemento de las 5´s seguimiento (Shitsuke), puesto que al iniciar el proceso de recolección de datos se estuvo retroalimentando a los técnicos y del mismo modo solicitando la información de manera ordenada, tabulando la información y haciendo seguimiento para completar la recolección de datos en el tiempo programado, además debido a que paralelamente se estaban ejecutando labores para certificar edificios fue de gran ayuda el estar en constante seguimiento de dichas actividades lo que trajo beneficios económicos para la compañía y seguridad para los usuarios en general.

- Por medio de la intervención del personal técnico del área de trabajo, se realizó un levantamiento en las diferentes tecnologías de los ascensores con el objetivo de evidenciar las condiciones en que se encuentran y así definir aquellos trabajos los cuales puedan desarrollar los técnicos preventivos y poder garantizar la seguridad de los usuarios.

- Fue diseñado un modelo para mejorar el proceso de mantenimiento preventivo con el fin de poder garantizar el cumplimiento de las seguridades con las cuales se deben contar los ascensores para poder cumplir con en la norma NTC 5926-1.

- Con el levantamiento de los elementos que necesita los ascensores se realiza una propuesta de venta a los clientes para que los ascensores sean certificados ante la ONAC.
Es importante aclarar que la certificación de elevadores es un proceso que apenas comienza, según (coopropiedades.com, 2016) para el julio de 2016 solo se había certificado el 7% de los elevadores en Bogotá, la mayoría de ellos en centros comerciales y hospitales, esta cifra revela que aún falta el 93% de equipos para certificar y evidencia falta de información en este proceso especialmente en los edificios de uso residencial lo que corresponde a la mayoría de ascensores analizados en este estudio y que según el IDIGER deberían estar certificados desde el año 2014 en su totalidad. Este es sin lugar a duda un proceso joven que constituye una gama de oportunidades de mejora, oportunidades de aprendizaje, de negocio para las empresas prestadoras del servicio de mantenimiento y generación de empleo y creación de empresa para el suministro e instalación de los elementos faltantes en los ascensores para poder cumplir con la norma NTC 5926-1.

La implementación de modelos de mejora en organizaciones enfrenta grandes obstáculos, ya que por naturaleza humana existe la tendencia a rechazar los cambios porque se presenta la sensación de incomodidad o agravio cuando se es forzado a salir de la zona de confort, esto especialmente por factores culturales y sociales al estar en un país subdesarrollado, de manera similar las personas encargadas de administrar propiedad horizontal tienen dificultad para ceñirse a las normas que son desarrolladas para el transporte vertical, por tanto es necesario en primera medida implementar procesos de capacitación con los trabajadores y posteriormente con los clientes para dar claridad de la necesidad de certificar los ascensores con la norma NTC5926-1 y los beneficios que ello trae.
7. REFERENCIAS

23. ICESI. (mayo de 2010). [icesi.edu.co](http://www.icesi.edu.co). Recuperado el 15 de marzo de 2016, de icesi.edu.co:
 - http://www.icesi.edu.co/ingenieria_industrial/cognos/images/stories/programacion_2010_1/5s.pdf

24. ICONTEC. (11 de JULIO de 2014). [ICONTEC.ORG](http://www.icontec.org/NC/SP/Articulos%20en%20Prensa/La%20Republica%2019%20de%20Mayo%20de%202015.pdf). Recuperado el 05 de MARZO de 2016, de:
 - http://www.icontec.org/NC/SP/Articulos%20en%20Prensa/La%20Republica%2019%20de%20Mayo%20de%202015.pdf

 http://prevencionar.com.co/2016/06/27/metodo-las-5s/

40. UPDEC. (31 de MAY0 de 2013). IPN.MX. Recuperado el 15 de NOVIEMBRE de 2016, de IPN.MX: http://www.ipn.mx/dse/intra/Documents/pdfs/Material5s.pdf