PROBLEMAS REFRACTIVOS EN UNA POBLACIÓN ESCOLAR DE LA CIUDAD DE PEREIRA-RISARALDA

LUISA FERNANDA LAVERDE CHUNZA
NATALIA SANCHEZ SARMIENTO
DIRECTOR. DR. ALEJANDRO LEON ALVAREZ

BOGOTÁ D.C.
2018
PROBLEMAS REFRACTIVOS EN UNA POBLACIÓN ESCOLAR DE LA CIUDAD DE PEREIRA-RISARALDA

LUISA FERNANDA LAVERDE CHUNZA
NATALIA SANCHEZ SARMIENTO
DIRECTOR. DR. ALEJANDRO LEON ALVAREZ

PROGRAMA DE OPTOMETRIA
FACULTAD DE CIENCIAS DE LA SALUD
UNIVERSIDAD DE LA SALLE
BOGOTA D.C. 2018
AGRADECIMIENTOS

Agradezco a Dios por iluminarme en elegir esta hermosa carrera y concederme el don de sabiduría para terminarla y empezar mi vida profesional

Agradezco a mi madre Gladys Chunza y padre Rafael Laverde, quienes me han apoyado incondicionalmente con su amor, entrega, sacrificio, compañía para lograr este gran sueño e impulsarme a ser mejor cada día

A mis hermanos Santiago, Sebastián y a mi tío Enrique

A mi director de proyecto de grado Dr Alejandro León por su colaboración, dedicación y exigencia en este proyecto.

Luisa Fernanda Laverde Chunza.

Agradezco a Dios por haberme permitido alcanzar este logro con mucha Fe y constancia, por enseñarme a ser una mejor persona y profesional.

A mis padres quienes me brindaron el apoyo, la confianza y me acompañaron en este proceso, gracias por cada consejo y palabra de aliento cuando más lo necesitaba.

A mis hermanas, Cuñado y sobrino

A mi director de proyecto de grado por cada espacio que me brindo para culminar esta etapa de mi vida profesional.

Natalia Sánchez Sarmiento.
Contenido

1 INTRODUCCION .. 8
2 PLANTEAMIENTO DEL PROBLEMA .. 9
3 JUSTIFICACIÓN .. 12
4 OBJETIVOS .. 13
 4.1 Objetivo General .. 13
 4.2 Objetivos Específicos .. 13
5 MARCO TEORICO .. 14
 5.1 Estados refractivos del ojo .. 14
 5.1.1 Emetropía .. 14
 5.1.2 Ametropía .. 14
 5.2 Anisometropía .. 21
 5.3 Profundidad de Foco y Profundidad de Campo .. 21
 5.4 Refracción Objetiva .. 22
 5.4.1 Retinoscopia estática .. 22
 5.4.2 Retinoscopia Bajo Ciclopléjia ... 25
 5.5 Refracción Subjetiva .. 26
 5.5.1 Test De Miopización (Emborronamiento) ... 27
 5.5.2 Refracción Meridional .. 28
 5.5.3 Cilindro Cruzado de Jackson .. 28
 5.5.4 Test rojo verde ... 30
6 DISEÑO METODOLÓGICO ... 31
 6.1 Tipo de estudio ... 31
 6.2 Población Y Muestra .. 31
 6.3 Criterios De Inclusión .. 31
 6.4 Criterios De Exclusión .. 31
 6.5 Procedimientos Y Técnicas A Emplear .. 32
 6.6 Procesamiento Y Análisis Estadístico De Datos .. 32
 6.7 Aspectos Bioéticos ... 32
7 MARCO ESTADÍSTICO .. 33
8 RESULTADOS .. 34
9 DISCUSIÓN .. 39
10 CONCLUSIONES ... 42
11 REFERENCIAS .. 43
Contenido de Tablas.

Tabla 1. Clasificación según la magnitud de miopía ... 15
Tabla 2. Manifestaciones Clínicas de miopía .. 16
Tabla 3. Clasificación según la magnitud de hipermetropía 17
Tabla 4. Manifestaciones clínicas de hipermetropía .. 18
Tabla 5. Clasificación según la magnitud de Astigmatismo 20
Tabla 6. Manifestaciones clínicas de Astigmatismo ... 20
Tabla 7. Ventajas y Desventajas de la Retinoscopia Estática 25
Tabla 8. Criterio de clasificación de los defectos refractivos basados en la severidad 33
Contenido de Figuras

Figura 1. Clasificación del astigmatismo por defecto refractivo ... 19
Figura 2. Astigmatismo según la orientación... 20
Figura 3. Profundidad de foco y campo ... 21
Figura 4. Principio Óptico... 22
Figura 5. Frecuencias relativas (porcentajes) para sujetos clasificados por la presencia de un defecto refractivo (emétope – azul; amétope – naranja) hallada mediante retinoscopía o la refracción subjetiva... 34
Figura 6. Frecuencia de los defectos refractivos agrupados por su magnitud (leva, moderada, severa)... 35
Figura 7. Frecuencia del astigmatismo agrupado por el punto focal imagen de sus dos meridianos principales hallado con la retinoscopía y la refracción subjetiva 36
Figura 8. Porcentaje del astigmatismo organizado por la orientación del meridiano eje hallado con la retinoscopía y la refracción subjetiva .. 36
Figura 9. Frecuencia de defectos refractivos según grupo etario hallada con la refracción subjetiva y retinoscopía ... 37
Figura 10. Frecuencia de la anisometropía esférica y cilíndrica hallada con la refracción subjetiva y la retinoscopía ... 37
PROBLEMAS REFRACTIVOS EN UNA POBLACIÓN ESCOLAR DE LA CIUDAD DE PEREIRA-RISARALDA

RESUMEN

Introducción: Los defectos refractivos (miopía, hipermetropía y astigmatismo) son la principal causa de problemas visuales, así como de ceguera previsible en el mundo; por lo que conocer su frecuencia es importante para tomar decisiones de carácter público y clínico. Objetivo: Determinar la prevalencia de defectos refractivos en una población de colegios públicos en edades comprendidas de 5 a 19 años en la ciudad de Pereira. Metodología: Se realizó un estudio retrospectivo, descriptivo y secundario al macroproyecto “Estimación de los valores oculares y visuales normales en una población de 5 a 19 años de edad de la ciudad de Pereira”, donde los criterios de inclusión fueron historias clínicas completas y que estuvieran dentro de las edades de 5 a 19 años, y los criterios de exclusión fueron las historias clínicas que reportaron estrabismo, ambliopía, anisometropía, alteraciones de segmento anterior, posterior y antecedentes de trauma ocular. En las técnicas a emplear, las historias clínicas fueron escaneadas y convertidas a formato “pdf”. A continuación, los datos fueron registrados en una base de datos EXCEL. El análisis de los datos se hizo por medio de frecuencias relativas. Resultados: el defecto refractivo que más estuvo presente fue la hipermetropía. De las ametropías estudiadas prevaleció la forma leve. Conclusión: La prevalencia de defectos refractivos para la población estudiada fue 43.11% en retinoscopy y 25.19% en refracción subjetiva.

Palabras clave: prevalencia, defectos refractivos, población escolar.

ABSTRACT

Introduction: refractive errors (myopia, hyperopia and astigmatism) are the main cause of visual problems, as well as avoidable blindness in the world; so knowing its frequency is important to make decisions of a public and clinical nature. Objective: determine the prevalence of refractive errors in a population of public schools from 5 to 19 years old in the city of Pereira. Methodology: A retrospective, descriptive and secondary study was carried out on the macro project "Estimation of the ocular and normal visual values in a population between 5 and 19 years old in the city of Pereira", where Inclusion criteria were complete clinical records and were between 5 and 19 years old, and the exclusion criteria were the clinical histories that reported strabismus, amblyopia, anisometropia, anterior segment alterations, posteriorly and antecedents of ocular trauma. In the techniques that will be used, the medical records were scanned and converted to the "pdf" format. Next, the data was recorded in an EXCEL. The analysis of the data was done by means of relative frequencies. The analysis of the data was. Results: The refractive defect that was most present was hyperopia. Of the studied ametropia, the mild form prevailed. Conclusion: The prevalence of refractive errors for the studied population was 43.11% in retinoscopy and 25.19% in subjective refraction.

Key words: prevalence, refractive defect, school population.
1 INTRODUCCION

El ojo humano es un sistema óptico que está compuesto por diferentes elementos como: potencia de la córnea y cristalino, longitud axial, índices refractivos, profundidad de la cámara anterior, los cuales determinan el estado refractivo de cada persona.

Los errores de refracción son trastornos oculares en los que, por mal funcionamiento óptico, el ojo no es capaz de proporcionar una buena imagen. Las ametropías pueden dividirse en dos grandes grupos: Esféricas (miopía e hipermetropía) y Cilíndricas (astigmatismo). Estas a su vez se pueden clasificar de acuerdo a sus características anatómicas y clínicas, magnitud, en función de la acomodación específicamente en la hipermetropía, entre otras.

La no corrección de dichos defectos puede conllevar a efectos tan graves como: la discapacidad visual en niños, constituyéndose como la primera causa en edades comprendidas de 5 a 15 años y la ceguera prevenible en el mundo (1)

De hecho, el 80% de la información que recibimos de nuestro entorno, y las diferentes actividades que realizamos en nuestra vida cotidiana las concebimos a través de la visión, de allí radica la importancia de detectar tempranamente cualquier alteración.

Para diagnosticar cualquier defecto refractivo es necesario emplear técnicas objetivas dentro de las cuales se encuentran: Retinoscopia estática, retinoscopia dinámica, bajo ciclopléjia, entre otros, se debe de completar con una prueba subjetiva para determinar la refracción esferocilíндrica con la que el sujeto alcanza su mejor agudeza visual.
2 PLANTEAMIENTO DEL PROBLEMA

Los defectos refractivos (miopía, hipermetropía y astigmatismo) son la principal causa de problemas visuales, así como de ceguera prevenible en el mundo (1), por lo que conocer su frecuencia es importante para tomar decisiones de carácter público y clínico.

A nivel mundial, Claire Gilbert en el 2012 presentó la prevalencia de Ceguera vs. Discapacidad Visual de la Organización Mundial de Salud (OMS), siendo la ceguera por error refractivo no corregido un 3% de los 39 millones de ciegos en el mundo, y visión subnormal un 43% de los 285 millones con visión subnormal (2). En total, hay aproximadamente 107 millones de individuos afectados por errores refractivos en el mundo.

En América Latina, la prevalencia de errores refractivos en los niños varía mucho entre los países, siendo más prevalente la hipermetropía en Paraguay y la miopía en México con un 75%, Chile (3- 9%) y en Brasil de (4-6%) (2). En el 2013 se realizó un estudio descriptivo transversal en la clínica metropolitana en Ecuador, donde evaluaron la agudeza visual y los problemas refractivos en una población de 180 participantes siendo escogidos aleatoriamente; para los diagnósticos de dichas ametropías se basaron en el uso del autorefractómetro, obteniendo como resultado un 56,11 % que presentaron defectos refractivos como miopía, hipermetropía y astigmatismo en comparación con un 43,89 % de estudiantes emétropes. (3)

En otro estudio se demostró la frecuencia de ametropías en niños que asistieron a consulta de oftalmología del Policlínico en Santiago Cuba, donde se realizó refracción objetiva y subjetiva. Se encontró que entre las ametropías más frecuentes está la miopía (51,6 %), seguida de la hipermetropía (26,7 %), astigmatismo (19,6 %) y un 2,1 % presentó anisometropía. (4)

De igual manera, en un estudio de la caracterización de la morbilidad visual y ocular de la población atendida en Colombia, según los registros individuales de prestación de servicios (RIPS) 2009 y 2010, encontraron que para el año 2009 el 23.1% presentaban errores refractivos y para el 2010 el 44%. (5) Así mismo, en el año 2009 en Pereira determinaron las alteraciones visuales y oculares mediante la información diligenciada en los RIPS de tamizaje visual en 2006 y 2007, obteniendo como resultado en los defectos refractivos, un 50.6% con presencia de hipermetropía, 26.1% astigmatismo, 11.45% miopía y 9.32% de hipermetropía. (6)

Por otro lado, en el año 2000 en la ciudad de Bogotá estudiaron la prevalencia de la salud visual en una población escolar, para lo cual emplearon retinoscopia dinámica monocular y determinaron que el 59.2% de la población tenía...
hipermetropía, el 28.2% astigmatismo, 4.0% miopía y el 9.0% emetropía.7 De igual manera, en el 2008 emplearon dicha técnica para determinar la prevalencia de defectos refractivos y su asociación con la agudeza visual en escolares de 4 a 12 años del Centro Educativo Liceo Samper Uribe del municipio de Sibaté; los resultados los obtuvieron de acuerdo al género. Respecto al masculino el 45.45% fue para astigmatismo, 35.67% hipermetropía, 10.49% emetropía y 8.39% miopía; para el género femenino 46.80%, 36.17%, 11.708%, y 5.32% respectivamente(8). Estudios demuestran que el uso de esta técnica puede llevar a sobre o subestimar la cantidad de ametropía de un sujeto, puesto que el poco control de la acomodación genera en algunos momentos incrementos o disminución del resultado.(9)(10)

Para finalizar, Daza y Murcia mediante autorefractómetros determinaron los estados refractivos de una población de 7 a 14 años atendida en la clínica de optometría de la Universidad de La Salle, obteniendo así la prevalencia de astigmatismo (91.8%), hipermetropía (4.16%) y miopía (4.00%). Sin embargo, por medio de una prueba piloto del protocolo reisvo, establecieron el grado de estandarización del autorrefractómetro y el autorefractómetro con bajo cicloplejía, donde discutieron que el autorrefractómetro es un aparato que ofrece velocidad, exactitud y repetitividad. Aunque estos instrumentos son de gran calidad, no garantizaron en su totalidad la formulación para el paciente; simplemente son una guía de retinoscopía que de igual forma tiene que ser corroborada y realizar un buen subjetivo al paciente(11). Por otra parte, un estudio en niños de 4 a 14 años de edad, utilizó algunas técnicas como: retinoscopía, refracción subjetiva, autorefractómetro, y autorefractómetro bajo cicloplejía y así comprobaron cuál era el mejor método; analizando que el autorrefractómetro debe estar bien calibrado para obtener una buena graduación de la fórmula del paciente, ya que a éstas edades se puede optar por hacer un buen subjetivo y tomar el autorrefractómetro como referencia.

Además, la mayoría de los niños en edades comprendidas de 9 a 14 años, las refracciones tienden a ser más miópicas que en el subjetivo, por lo que es importante corroborar el valor de la esfera; de igual manera para los valores del astigmatismo obtenidos mediante el autorefractómetro. Estos deben ser comprobados con el subjetivo, porque en muchos casos se obtiene la misma calidad visual con menor valor de cilindro. Finalmente, en el estudio se concluyó que no existe una única técnica para obtener el error refractivo de cada persona, son muchos los factores a tener en cuenta para determinar la prescripción definitiva. Por ello es muy recomendable hacer más de una prueba, así se dispondrá de más datos a la hora de decidir la prescripción definitiva del paciente.(12) Por lo tanto, los autorefractómetros no son muy confiables, ya que arrojan valores más negativos que no prevén la acomodación inducida, las alteraciones de la córnea, cristalino, o patologías como el pterigión por lo cual conllevan a inexactos.
De acuerdo a los estudios que se han realizado a nivel nacional, se evidencia incongruencia en los resultados, al presentar variabilidad en los diagnósticos de defectos refractivos, lo cual puede deberse a diferentes factores como el tamaño de la muestra que no es significativa en dichos estudios, el tipo de muestreo, las técnicas en la recolección de datos que en algunos casos no son fiables como lo es la retinoscopía dinámica monocular y el autorefractómetro como ya se explicó anteriormente. También en dichos estudios no mencionan bajo qué criterios se basaron para el diagnóstico de defectos refractivos, y la gran mayoría son realizados en clínicas y hospitales, por lo que tienden a generar cierto sesgo en el estudio dado que la prevalencia va a ser mayor al compararlo con muestras recolectadas en instituciones o lugares ajenos a éstos. Por todo lo mencionado anteriormente, cabe preguntarse:

¿Cuál es la prevalencia de defectos refractivos en la población escolar de Pereira, Risaralda?
3 JUSTIFICACIÓN

Los errores de refracción son trastornos oculares muy comunes, en los que el ojo no puede enfocar claramente las imágenes, donde el resultado es la visión borrosa, la cual, a veces tiene un efecto tan grave que causa discapacidad visual; por lo tanto, se encuentran tres errores de refracción más comunes que son: miopía, hipermetropía y astigmatismo.

La visión es una función del sistema nervioso que requiere un aprendizaje y entrenamiento prolongado para desarrollarse en forma óptima. Los primeros años de vida son críticos en este sentido. Para que el niño desarrolle plenamente sus funciones visuales es necesario que vea bien. Si en la primera infancia la presencia de una ametropía no corregida impide el desarrollo de ciertas funciones visuales, la agudeza visual podrá recuperarse más tarde.\(^{13}\)

La detección temprana de las alteraciones de la agudeza visual permite promover la salud visual, prevenir enfermedades oculares y reducir la ceguera prevenible o curable.\(^{14}\)

En Colombia no hay muchos estudios con representatividad nacional sobre los defectos refractivos, de allí radica la importancia de realizar este estudio en la población de Pereira; para que estudiantes, profesionales de la salud visual y ocular (optómetras, oftalmólogos), personas interesadas en el tema, puedan consultarlo.

Este trabajo fue viable porque se contó con los permisos por parte de la Universidad del Área Andina, sede Pereira para acceder a la información consignada en las historias clínicas, además porque se cuenta con el apoyo para realizar el análisis de la información y los medios para efectuarla.
4 OBJETIVOS

4.1 Objetivo General

- Determinar la prevalencia de defectos refractivos en una población de colegios públicos en edades comprendidas de 5 a 19 años en la ciudad de Pereira.

4.2 Objetivos Específicos

- Clasificar los defectos refractivos de acuerdo a su severidad (leve, moderada, severa)
- Determinar los problemas refractivos según grupo etario.
5 MARCO TEORICO

5.1 Estados refractivos del ojo

5.1.1 Emetropía

Ocurre cuando los rayos de luz provenientes del infinito óptico, con la acomodación relajada al atravesar el ojo, enfocan en la retina; de esta manera se pueden observar los objetos nítidamente. (15)

5.1.2 Ametropía

Es el defecto refractivo que se da cuando los rayos de luz provenientes del infinito y con la acomodación relajada, enfocan por delante o detrás de la retina; a esto se le denomina: miopía, hipermetropía o astigmatismo. (21) (22)

5.1.2.1 Miopía

Sucede cuando los rayos de luz provenientes del infinito óptico que inciden en el ojo con la acomodación relajada, se enfocan delante de la retina formando una imagen real e invertida. Se caracteriza por presentar una potencia refractiva excesiva. (24)

Clasificaciones

A lo largo de la historia la clasificación de la miopía la han catalogado de diferentes maneras

Clasificación por la tasa de progresión miópica:

Donders en 1864 se basó en la tasa de progresión describiéndolo en 3 categorías:

- **Miopía estacionaria**: (-1.50, -2.00 Dpt). Surge en los años de desarrollo y permanece estable durante la edad adulta.
- **Miopía temporalmente progresiva**: Aparece en los primeros años de la adolescencia y avanza hasta los 20 años. Después de esta edad, la tasa de progresión decrece acercándose a cero.
- **Miopía permanentemente progresiva**: se caracteriza porque asciende rápidamente de los 25 hasta los 35 años de edad, y luego avanza más lentamente. (15) (25)
Clasificación basada en la edad de aparición:

Grosvenor en 1987 la realiza de la siguiente manera:
- **Miopía congénita**: presente en el nacimiento y persiste después del periodo de emetropización. Suele presentar valores elevados (-10.00D).
- **Miopía del comienzo de la infancia**: se presenta entre los 5 o 6 años y la pubertad o adolescencia.
- **Miopía de comienzo precoz en el adulto**: aparece desde los 20 a los 40 años.
- **Miopía de comienzo tardío en el adulto**: surge después de los 40 años.\(^{(15)}\)\(^{(16)}\)

Clasificación por las características anatómicas:

- **Axial**: el ojo es demasiado largo para su poder refractivo.
- **Refractiva**: el sistema refractivo es muy excesivo para la longitud axial del ojo.

Dentro de esta, se subclasifica en:

1. **Miopía índice**: uno o más de los índices refractivos de los medios son anómalos.
2. **Miopía de curvatura**: el radio de curvatura reducido de una o más superficies refractivas produce una mayor potencia dióptrica.
3. **Miopía de cámara anterior**: el aumento de la profundidad de la cámara anterior aumenta el poder refractivo\(^{(15)}\)

Clasificación clínica

- **Miopía simple**: inferiores a 6.00 D, comienza en torno a la adolescencia, aumenta discretamente en los años siguientes y se estabiliza al final de la segunda década.
- **Miopía patológica**: mayores a 6.00 D y progresivas, que se acompañan de lesiones oculares. La progresión puede darse incluso después de los 25-30 años.\(^{(16)}\)

Tabla 1. Clasificación según la magnitud de miopía

<table>
<thead>
<tr>
<th></th>
<th>Baja</th>
<th>Moderada</th>
<th>Alta</th>
<th>Extrema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asociación americana de optometría</td>
<td>< -3.00 D</td>
<td>-3.00 a -6.00 D</td>
<td>> -6.00 D</td>
<td></td>
</tr>
<tr>
<td>Martin y Vecilla</td>
<td>< -4.00 D</td>
<td>-4.00 D a -8.00 D</td>
<td>> -8.00 D</td>
<td></td>
</tr>
<tr>
<td>Vásquez & Mónico</td>
<td>< 3.00 D</td>
<td>-3.00 a 6.00 D</td>
<td>600 D a 9.00 D</td>
<td>> 9.00 D</td>
</tr>
</tbody>
</table>

Elaboración: Fuente propia \(^{(16)}\)(24)(26)
Tabla 2. Manifestaciones Clínicas de miopía

<table>
<thead>
<tr>
<th>Síntomas</th>
<th>Signos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visión borrosa de lejos</td>
<td>Agudeza visual disminuida de lejos</td>
</tr>
<tr>
<td>Cefalea frontal</td>
<td>Efecto estenopeico</td>
</tr>
<tr>
<td>Miodesopsias</td>
<td>Desprendimiento vítreo posterior</td>
</tr>
<tr>
<td>Metamorfopsias</td>
<td>Atrofia peripapilar</td>
</tr>
<tr>
<td></td>
<td>Degeneración en lattice de la retina periférica</td>
</tr>
<tr>
<td></td>
<td>Atrofia del epitelio pigmentario</td>
</tr>
<tr>
<td></td>
<td>Estafiloma posterior</td>
</tr>
<tr>
<td></td>
<td>Interrupciones en la membrana de Bruch y coriocapilar, como resultado de líneas a través del fondo llamado “estrías de laca”</td>
</tr>
<tr>
<td></td>
<td>Mancha de Fuchs en el área macular. (16)(24)</td>
</tr>
</tbody>
</table>

Elaboración: Fuente propia

5.1.2.2 Hipermetropía

Se caracteriza por presentar una potencia refractiva deficiente de manera que, en ausencia de acomodación, los rayos paralelos provenientes del infinito óptico al incidir en el ojo se enfocan después de la retina, formando una imagen virtual y derecha. (15) (27)

Clasificaciones

Clasificación clínica

- La hipermetropía simple: Puede ser axial o refractiva.
- Hipermetropía patológica: Es causada por un mal desarrollo en la anatomía ocular, enfermedad o trauma.
- Hipermetropía funcional: Esta se debe a la parálisis de acomodación. (27)
Clasificación por características anatómicas

- **Axial**: la longitud axial es demasiado corta para refracción del ojo.
- **Refractiva**: el sistema refractivo tiene poca potencia con respecto a la longitud axial del ojo y ésta a su vez se subdivide en:
 - Hipermetropía de índice: en el que uno o más de los índices de refracción de los medios son anómalos.
 - Hipermetropía de curvatura: en la que el radio curvatura de una o más superficies refractivas produce una disminución de la potencia refractiva.
 - Hipermetropía de cámara anterior: Una cámara anterior pequeña producirá una disminución en el poder dióptrico del ojo. \(^{15}\)

Clasificación en función de la acomodación

- **Hipermetropía latente**: es la cantidad de hipermetropía que está compensada por el tono del músculo ciliar. En condiciones normales, el tono muscular compensa fisiológicamente una hipermetropía de \(0.75\) a \(1.00\) D aproximadamente. Se coloca en manifiesto empleando fármacos ciclopléjicos. \(^{17}\)
- **Hipermetropía manifiesta**: en condiciones normales no está corregida y se detecta mediante la refracción subjetiva sin ciclopléjicos.

1) Hipermetropía facultativa: hipermetropía que es compensada por el esfuerzo de la acomodación, y según la amplitud de acomodación; puede o no corregirse dependiendo de la manifestación de síntomas por parte del paciente.

2) Hipermetropía absoluta: hipermetropía que no puede ser compensada por la acomodación; es decir, el error refractivo excede la amplitud de acomodación, así que la agudeza visual se ve afectada y los síntomas aparecen por el esfuerzo de compensar esta hipermetropía.

- **Hipermetropía total**: la suma de la latente y manifiesta. \(^{15}\) \(^{17}\)

<p>| Tabla 3. Clasificación según la magnitud de hipermetropía |
|---------------------------------|---------------|---------------|
| Asociación americana de optometría | Baja | Moderada | Alta |
| +2.00 D | +2.25 a +5.00 D | > +5.00 D |
| Ronsefield | 0.00 a +3.00D | +3.12 a +5.00D | > +5.00D |
| Vásquez & Mónico | 0.00 a +3.00D | +3.25D a +5.00D | > +5.25D |</p>
<table>
<thead>
<tr>
<th>Cárcel J</th>
<th>+1.00 D a 3.00 D</th>
<th>+3.00 D a 6.00 D</th>
<th>> 6.00 D</th>
</tr>
</thead>
</table>

Elaboración: Fuente propia

Tabla 4. Manifestaciones clínicas de hipermetropía

<table>
<thead>
<tr>
<th>Síntomas</th>
<th>Signos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Disminución de la agudeza visual en visión lejana y en visión próxima</td>
<td>• Estrabismo convergente: causado por un exceso de acomodación</td>
</tr>
<tr>
<td>• Cefalea frontal, astenopia y fotofobia (^{(17)})</td>
<td>• Conjuntivitis o blefaritis</td>
</tr>
<tr>
<td></td>
<td>• Disminución de la cámara anterior</td>
</tr>
<tr>
<td></td>
<td>• Ambliopía bilateral en hipermetropías altas.</td>
</tr>
<tr>
<td></td>
<td>• Tortuosidades vasculares (^{(17)})</td>
</tr>
</tbody>
</table>

Elaboración: Fuente propia

5.1.2.3 Astigmatismo

Es una ametropía presentando un defecto en la curvatura de la córnea y los rayos de luz enfocan en diferentes meridianos; por lo tanto, esto no permite que los objetos cercanos o lejanos se vean con nitidez. \(^{(29)}\)

Clasificaciones

Clasificación de acuerdo a la regularidad de los meridianos

• **Astigmatismo regular**: los meridianos principales son perpendiculares entre sí (90\(^{\circ}\)), la refracción es constante.
• **Astigmatismo irregular**: los meridianos no son perpendiculares entre sí, la refracción puede variar. \(^{(15)}\)
Clasificación según el defecto refractivo:

Figura 1. Clasificación del astigmatismo por defecto refractivo

- Hipermetrópico simple
- Hipermetrópico Compuesto
- Miópico simple
- Miópico compuesto
- Mixto

Elaboración: Fuente propia
Clasificación según la curvatura y orientación de sus meridianos:

Figura 2. Astigmatismo según la orientación.

Tabla 5. Clasificación según la magnitud de Astigmatismo

<table>
<thead>
<tr>
<th></th>
<th>insignificante</th>
<th>Baja</th>
<th>Moderada</th>
<th>Alta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin & Vecilla</td>
<td>< 0.75 D</td>
<td>Entre 1.00 D y 1.50 D</td>
<td>1.75 D y 2.50 D</td>
<td>> 2.50 D</td>
</tr>
<tr>
<td>Rivas y Rozassa:</td>
<td>0.25 D a 0.75 D</td>
<td>1.00 D a 3.00 D</td>
<td>> a 3.00 D</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6. Manifestaciones clínicas de Astigmatismo

<table>
<thead>
<tr>
<th>Síntomas</th>
<th>Signos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Visión borrosa tanto de lejos como de cerca</td>
<td>• Diferencia en los radios de curvatura.</td>
</tr>
<tr>
<td>• Posiciones compensadoras de cabeza</td>
<td>• Inclinación del disco óptico</td>
</tr>
<tr>
<td>• Acercamiento excesivo en la lectura</td>
<td></td>
</tr>
<tr>
<td>• Imagen doble o con sombra en visión monocular. (18)</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración: Fuente propia
5.2 Anisometropía

Es la diferencia del poder refractivo de un ojo respecto al otro, superior a una dioptría esfero-cilíndrica.

Clasificación por la magnitud:

Bajo: (0 a 2 dioptrías)
Alto: (2 a 6 dioptrías)
Muy Alto: (> a 6 dioptrías) \(^{(15)}\)

5.3 Profundidad de Foco y Profundidad de Campo

Figura 3. Profundidad de foco y campo

La profundidad de foco es definida como la distancia en la retina sobre la cual una imagen óptica puede moverse sin alteración de la claridad. El intervalo de profundidad de foco oscila entre +0,04 D hasta +0,47 D. Y la profundidad de campo, es la zona de visión nítida en el campo visual, en la cual un objeto aparece enfocado \(^{(22)}\)

De acuerdo a la figura 3. La profundidad de campo se evidencia como la distancia comprendida de A hasta C, siendo B, el lugar donde se posiciona el objeto. Y la profundidad de Foco a la distancia entre A´ y C´, formándose la imagen en B´.
5.4 Refracción Objetiva

Retinoscopia

La retinoscopia nos permite examinar el poder refractivoc oular. Su principio óptico consta por la transmisión de una fuente de luz, la cual por medio del espejo del retinoscopio, se refleja en la retina y emerge en la pupila; este nos va a brindar información importante como la dirección, magnitud y velocidad del movimiento del reflejo, de acuerdo a la banda luminosa del retinoscopio. (30)

Figura 4. Principio Óptico

Fuente propia

5.4.1 Retinoscopia estática

Definida como la refracción objetiva de lejos, la cual brinda el poder refractivo esfero-cilíndrico dióptrico del ojo; una de las cosas importantes es que la acomodación del paciente va a estar relajada. Esta técnica es una de las primeras etapas que se realiza en un examen visual. (32).

La Retinoscopia se practica en pacientes colaboradores y también puede realizarse en niños, personas con discapacidades mentales, baja visión, no colaboradores; de este modo el resultado de la refracción puede ser la base de la corrección óptica aun cuando los pacientes no den respuestas subjetivas fiables (31).

Existen 4 factores que se evalúan en la retinoscopia estática:

Brillo

Este factor permite observar que tan brillante es el reflejo pupilar. Si el punto de neutralización se encuentra lejos, el reflejo será menos intenso, pero cuando se acerca al punto remoto se volverá más brillante, las sombras inversas producen
menos brillo que las directas a igualdad de defecto refractivo, por lo que puede ser recomendable trabajar con sombras directas. (19)

Dirección del movimiento

Cuando se realiza la retinoscopia estática con el espejo plano se observan dos reflejos diferentes, los cuales son:

- **Reflejos directos o positivos llamados sombras CON:** estos reflejos van en la misma dirección del movimiento del retinoscopio, ocurre porque la imagen que se forma en la retina es derecha y virtual por tanto, se emplean lentes positivos para neutralizar el reflejo y de esta manera converger la imagen y colocarla en la retina.
- **Reflejos inversos o negativos llamados sombras CONTRA:** estos reflejos van en dirección contraria al retinoscopio, sucede debido a que la imagen se está formando delante de la retina siendo real e invertida y, por lo tanto se utilizan lentes negativos para su neutralización y de esta manera para diverger la imagen y llevarla a la retina.

Velocidad del movimiento:

Para determinar la velocidad del movimiento del reflejo hay que tener en cuenta lo siguiente:

- Si el defecto refractivo es alto, la velocidad del reflejo será lenta
- Si el defecto refractivo es bajo, la velocidad del reflejo será rápida. (33)

Anchura

La anchura del reflejo es menor cuanto más alejado se encuentra el punto remoto y llena toda la pupila al alcanzarse la neutralización (19) debido a que:

- Cuando la ametropía es alta, la anchura de la sombra retiniana es gruesa.
- En cambio, cuando la ametropía es baja, la anchura de la sombra retiniana es delgada. (25)

Retinoscopia en astigmatismo

Cuando un ojo es astigmático, presenta diferentes potencias, el objetivo es encontrar los meridianos principales del ojo y así se obtendrá la neutralización; para esto se necesita determinar los ejes de estos meridianos que están clasificados por cuatro características, las cuales son:

- **Punto de rotura:** se basa cuando no hay una alineación de la franja proyectada en la pupila con respecto a la inclinación del reflejo del retinoscopio, por lo cual la línea se verá rota.
- **Anchura:** la anchura del reflejo es gruesa cuando la franja no se alinea con el ejé, pero si la franja se encuentra en la dirección de un meridiano
principal la anchura del reflejo será delgada.

- **Intensidad:** Si la franja se encuentra en el eje correcto la intensidad de la línea será más brillante.
- **Desviación:** ésta consiste en los movimientos oblicuos del reflejo de la franja; si la dirección del movimiento del reflejo es correspondiente a la dirección de la franja es porque estamos en un meridiano principal, pero si la dirección del movimiento del reflejo es oblicuo al movimiento de la franja no es uno de los meridianos principales. \(^{(25)}\) \(^{(21)}\)

Técnica:

Es importante tener en cuenta: la iluminación del consultorio que sea tenue, el examinador debe estar a la misma altura del paciente, y el paciente cómodamente sentado con la distancia pupilar ajustada al igual que la distancia al vértice.

Se inicia con el paciente fijando binocularmente un optotipo del 20/200. El examinador empieza primero por el ojo derecho del paciente, para lo cual debe ubicarse a una distancia de 50 cm, se antepone un lente de +2.00D en ambos ojos, con el fin de compensar la distancia de trabajo en el ojo que se está examinando. \(^{(32)}\)

Posterior a ello, se recomienda neutralizar primero con lentes esféricos el meridiano menos miope o más hipermétrope, teniendo en cuenta si el movimiento es “con” añadir lentes positivos y si es “contra” lentes negativos en pasos de 0.25D hasta neutralizar. \(^{(34)}\)

Una vez que se tenga neutralizado un meridiano con los lentes esféricos, se gira la franja del retinoscopio a 90° y se identifica si hay o no movimiento; si se encuentra neutro quiere decir que es una ametropía esférica. Pero si se observa movimiento ya sea con o contra se estaría ante una ametropía esfero-cilíndrica; por tanto, para los movimientos inversos se anteponen cilindros negativos hasta neutralizar, pero si hay movimientos directos, se colocan lentes esféricos positivos, hasta neutralizar el movimiento en el meridiano vertical; después se gira la franja a 90° volviendo a observar el primer meridiano que se exploró, el cual deberá tener un movimiento inverso; se procede a neutralizar con cilindros negativos, con el eje en la misma dirección de la franja. \(^{(23)}\)

Por último, la fórmula que se obtiene será: el valor más positivo estaría dado por la esfera, el poder cilíndrico sería el recorrido de los 2 meridianos y el eje es la dirección del meridiano más positivo. \(^{(35)}\) \(^{(36)}\)
Tabla 7. Ventajas y Desventajas de la Retinoscopia Estática

<table>
<thead>
<tr>
<th>VENTAJAS</th>
<th>DESVENTAJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Útil para niños</td>
<td>• El paciente no fija al infinito</td>
</tr>
<tr>
<td>• Método confiable</td>
<td>• El examinador no se encuentra en la distancia de trabajo correcta</td>
</tr>
<tr>
<td>• Informa sobre transparencia de los medios refringentes</td>
<td>• Se torna difícil si las pupilas son midriáticas</td>
</tr>
<tr>
<td>• Dato inicial de la prueba subjetiva</td>
<td>• No estar ubicado al mismo eje visual del paciente</td>
</tr>
<tr>
<td></td>
<td>• No utilizar el espejo del retinoscopio correcto.</td>
</tr>
<tr>
<td></td>
<td>• Si el paciente tiene problemas acomodativos no se puede realizar esta técnica</td>
</tr>
</tbody>
</table>

Elaboración: Fuente propia

5.4.2 Retinoscopia Bajo Ciclopléjia

La retinoscopia bajo Ciclopléjia busca medir el defecto refractivo del paciente en ausencia de la acomodación; para esto se necesitan ciclopléjicos, los cuales bloquean los receptores muscarínicos en el músculo ciliar y en el iris; por lo tanto, no serán estimulados por la acetilcolina; debido a esto, no va a haber acomodación y se producirá midriasis pupilar. (37) (38)

Este tipo de retinoscopia es más confiable, ya sea para niños o cuando hay presencia de estrabismos, ambliopías, hipermetropías latentes, anomalías acomodativas; (39) Es importante resaltar que los ciclopléjicos no se deben utilizar en pacientes que presenten síndrome de Down, convulsiones, problemas neurológicos, con cardiopatías, glaucoma con ángulo cerrado, entre otras.

“Los antagonistas de los receptores muscarínicos compiten con la acetilcolina (ACh) en los receptores colinérgicos muscarínicos por lo tanto, impiden la acción del neurotransmisor bloqueando el proceso de acomodación por parálisis del músculo ciliar”. (40)
Los ciclopléjicos que hacen parte de este grupo son:

a) Tropicamida: su concentración es del 0.5%-1% y para que haga efecto se demora entre unos 7 y 10 minutos, su tiempo de duración es de 2 a 6 horas.

b) Ciclopentolato: se establecen dos concentraciones que son al 0,5% y 1%, hace efecto entre 30 y 60 minutos, su tiempo de duración es de 3 a 12 horas.

c) Atropina: su concentración es al 0,5% o 1%, hace efecto a los 20 minutos después de colocarlo su tiempo de duración es de 7 a 10 días.\(^{(40)}\)\(^{(26)}\)

Por último, se debe tener en cuenta el medicamento ciclopléjico que se irá a suministrar, y la distancia de trabajo a la cual se va a realizar la retinoscopía, ya que se debe hacer la compensación tanto de la distancia como la del fármaco en la prescripción final.

Ciclopentolato: -0.50
Tropicamida: -0.25
Atropina: -1.00\(^{(5)}\)

Antes de aplicar el fármaco es necesario: tomar la presión intraocular y hacerle saber al paciente o al familiar sobre el procedimiento que se le va a realizar y los efectos que puede conllevar dicho fármaco, para que de esta manera firme un consentimiento informado.\(^{(41)}\)\(^{(22)}\)

Técnica:

El paciente debe estar cómodamente sentado, con su respectiva distancia pupilar y distancia al vértice. Al igual que en la técnica de retinoscopía estática se emplea el mismo procedimiento como ya fue explicado anteriormente.

Para la prescripción final es necesario realizar la compensación del fármaco que se empleó y así evitar el emborronamiento después que se pase el efecto del ciclopléjico.\(^{(41)}\)\(^{(34)}\)

5.5 Refracción Subjetiva

Técnica que realiza un comparativo de lentes, para así alcanzar la máxima agudeza visual.

Para realizar cualquier técnica en el foropter o montura de pruebas se coloca la fórmula obtenida mediante la refracción objetiva, ajustando la distancia pupilar de lejos, distancia al vértice, el paciente debe fijar el optotipo que estará ubicado a 6 metros.
5.5.1 Test De Miopización (Emborronamiento)

El objetivo es determinar la lente esférica-cilíndrica más positiva que proporcione al paciente la máxima agudeza visual. \(^{(42)}\)

Se realiza de manera monocular.

Técnica:

Se inicia con el valor obtenido de la refracción objetiva, y se miopiza al paciente, es decir; adicionar esfera positiva o disminuir esfera negativa, hasta alcanzar una AV de 20/200. Después se procede a realizar el masaje acomodativo (aumentar la potencia esférica positiva o disminuir potencia esférica negativa en pasos de 0,25 D y luego disminuir la potencia esférica positiva en pasos de 0,50 D) \(^{(42)}\) hasta que el paciente alcance una A.V de 20/30 o 20/40.\(^{(42)}\) En ese punto se coloca el dial o reloj astigmático para determinar el eje y el poder astigmático, y se indaga al paciente que línea ve más oscura.

- Si se emplea el dial, dependiendo de la respuesta, colocar el eje del cilindro 90° de dicha línea más oscura; si se registran 2 líneas nítidas o más, trazar una bisectriz y ubicar el eje del cilindro perpendicular a la bisectriz. \(^{(23)}\)
- Si se emplea el reloj astigmático, determinar la dirección de esta línea y hacer una similitud con las horas del reloj; multiplicar la hora de dicha dirección por 30°, si se registran 2 líneas o más, trazar una bisectriz con lo que se obtiene el eje del cilindro del astigmatismo. \(^{(23)(42)}\)

En este paso, es importante tener en cuenta:

- Si el paciente no ve ningún símbolo, puede estar ante una excesiva miopización.
- Si ve todas las líneas igual de negras, significa que es esférico o que el cilindro que tiene es suficiente.
- Si indica que ve una línea más oscura que las demás, adicionar lentes cilíndros negativos hasta que logre verlas iguales.
- Si el paciente indica que ve una línea más oscura o contraria distinta a la inicial, se estaría ante una hiper corrección cilíndrica. \(^{(23)(42)}\)

Luego, se vuelve a colocar el optotipo de letras para ir desmiopizando en pasos de 0.25 Dpt con ayuda del masaje acomodativo hasta que el paciente alcance su mejor agudeza visual.

Realizar el mismo procedimiento para el ojo contrario y tomar agudeza visual monocular y binocular.
5.5.2 Refracción Meridional

El objetivo es determinar la compensación monocular de forma subjetiva e independiente para cada uno de los meridianos principales empleando una rendija estenopeica (33)

Técnica:

Se inicia con el valor esférico obtenido en la refracción objetiva. Se procede a colocar la rendija estenopeica y, mientras el examinador va girando la hendidura, pedirle al paciente que indique si en algún momento aparecen los optotipos con mayor nitidez

- Si el paciente reporta que siempre aparecen los optotipos con igual nitidez, se debe a que no presenta astigmatismo residual o no compensado
- Si el paciente reporta una mejoría en la nitidez de los optotipos para una cierta rotación de la rendija, determinar dicha orientación con precisión. (33)

Después con la rendija en la posición con la que ve mejor, miopizar hasta alcanzar una agudeza visual de 20/40 o 20/50 e ir reduciendo la potencia esférica en pasos de -0.25 Dpts hasta lograr la mejor agudeza visual. (33) (44) luego, se vuelve a girar la rendija 90° a la orientación inicial y el paciente debe reportar en qué momento ve los optotipos con mejor nitidez. Es importante tener en cuenta, si la AV no es inferior o igual a 20/50 se debe miopizar hasta alcanzar este valor, seguido de ello, se debe ir reduciendo la potencia esférica en pasos de -0.25 Dpts hasta alcanzar la mejor AV.

La prescripción final se calcula de la siguiente manera: se toma como esfera el valor más positivo, para el valor cilíndrico corresponde al valor de poder entre los 2 meridianos y el eje del cilindro se obtiene por la ubicación de la hendidura en la segunda posición (44). Por último, se retira la hendidura, y se coloca la compensación final para medir la agudeza visual.

5.5.3 Cilindro Cruzado de Jackson

Es un lente esfero-cilíndrico en el que la potencia del cilindro es el doble que la de la esfera, y de signo contrario, equivalente a un lente con superposición de 2 lentes cilíndricos de igual potencia, con signos contrarios y ejes separados a 90° (25)
Para la realización de esta técnica, hay que tener en cuenta el orden del protocolo; iniciando primero con la afinación del eje del cilindro, poder cilíndrico y por último el valor de la esfera.

Afinación del eje del cilindro:

Se inicia colocando el CCJ paralelo al eje del cilindro refractivo, se gira el CCJ en las 2 posiciones y se pregunta al paciente en qué posición ve mejor o menos distorsionado. Si reporta que no hay cambio de visión, el eje estará afinado, pero si reporta que ve mejor en una posición que la otra, entonces en la posición que ve mejor, rotar inicialmente de 10 a 15° el eje corrector hacia los puntos rojos, (23) repetir el proceso nuevamente colocando el mango del CCJ en el eje tentativo e indagar en cuál posición ve mejor, si reporta que ve mejor en una posición volver a rotar el eje tentativo hacia los puntos rojos, esta vez de 5° en 5° hasta que vea igual en ambas posiciones. (23)(42)

Afinación del poder cilíndrico:

Después de haber afinado el eje del cilindro, se coloca el CCJ de manera que coincidan los puntos rojos o blancos con el eje del cilindro que previamente ya se afinó; al trabajar con el forópter se puede hacer coincidir la “P” con dicho eje, después se rota el CCJ en las posiciones 1 y 2 e indagar al paciente en cual posición ve mejor o si ve igualmente de borroso. Si reporta que ve igual en ambas posiciones, indica que el poder del cilindro estará afinado (42)(23). Pero si ve mejor en la posición que los puntos rojos del CCJ coinciden con el eje corrector, se le añade potencia cilíndrica negativa en pasos de 0.25 Dpts y si ve mejor en la posición que los puntos blancos del CCJ coinciden con el eje corrector, se le disminuye potencia cilíndrica negativa en pasos de 0.25 Dpts (23)(25)(42). Se debe repetir el procedimiento hasta que el paciente refiera que ve igual en las 2 posiciones.

Afinación de la esfera

El paciente debe fijar la rejilla en cruz de 5 brazos y se antepone el CCJ en posición A, es decir; puntos rojos verticales (90°). Se indaga sobre cuál componente de la rejilla se ve más reteñido o nítido. Si el paciente ve los 2 componentes iguales de reteñidos, el poder esférico estará afinado, pero si ve más negro el componente vertical, aumentar el poder esférico negativo o disminuir el poder esférico positivo y si ve más negro el componente horizontal, aumentar el poder esférico positivo o disminuir el poder esférico negativo. Repetir el procedimiento hasta que los 2 componentes estén iguales, sin embargo, si nunca logra ver igual los 2 componentes de la cruz, se debe dejar el valor de la esfera más positiva o menos negativa.
Finalmente, se toma agudeza visual y se repite el procedimiento para el ojo contrario. (20)(23)(33)(42)

5.5.4 Test rojo verde

Este test se basa en la focalización de los rayos de luz, dependiendo de la longitud de onda en la que se emite (42): La luz verde que es una onda de longitud corta, focaliza delante de la retina y la luz roja, es una onda de longitud larga, focaliza virtualmente por detrás de la retina (25)

Técnica

Se realiza monocular, empleando el optotipo rojo-verde, iniciando con los valores obtenidos de la afinación de la potencia esférica y cilíndrica con su respectivo eje.

Se inicia preguntando al paciente sobre qué fondo ve más nítido las letras del optotipo. Si afirma ver igual sobre los 2 fondos, indica que el poder esférico está afinado. Si es sobre el fondo verde, añadir esferas positivas en pasos de 0.25 Dpts o disminuir esferas negativas en pasos de 0.25 Dpt hasta lograr igualdad en los 2 fondos, y si afirma ver mejor sobre el fondo rojo, aumentar esferas negativa en pasos de 0.25 Dpts o disminuir esferas positivas en pasos de 0.25 Dpts, hasta que vea igual (23)(42)(20). Finalmente, se toma A.V e iniciar de nuevo el procedimiento con el otro ojo.
6 DISEÑO METODOLÓGICO

6.1 Tipo de estudio

Se hizo un estudio retrospectivo, descriptivo, transversal y secundario al macroproyeccion “Estimación de los valores oculares y visuales normales en una población de 5 a 19 años de edad de la ciudad de Pereira”, financiado por la Fundación Universitaria del Área Andina seccional Pereira.

6.2 Población Y Muestra

Para estimar la muestra se tomaron las historias clínicas de una población escolar examinada entre 5 a 19 años de los colegios públicos del área metropolitana de la ciudad de Pereira. Se hizo el cálculo mediante una Hipótesis Nula de una Población Específica con el software Tamaño de la Muestra versión 1.1; para esto se incluyeron como datos una hipótesis nula de 0.47 (47%), una hipótesis alterna de 0.35 (35%), un error tipo I de 0.01 (1%) y un tipo II de 0.05 (5%), para un total de 298 historias clínicas.

6.3 Criterios De Inclusión

- Historias clínicas completas.
- Edades registradas entre los 5 a 19 años de edad cumplidos al momento del examen.

6.4 Criterios De Exclusión

Se excluyeron las historias con reporte de:

- Estrabismo manifiesto a cualquier distancia.
- Ambliopía (definida como la diferencia entre los ojos de 2 líneas de AV – 0.2 unidades logMAR y/o AV <0.3 logMAR en el ojo dominante).
- Anisometropía (diferencia ≥1.00D en el componente esférico y/o cilíndrico).
- Enfermedad sistémica general.
- Alteraciones patológicas de segmento anterior o posterior
- Antecedentes oculares de cirugía o trauma.
6.5 Procedimientos Y Técnicas A Emplear

Las HC fueron escaneadas y convertidas a formato “pdf”. A continuación, los datos se registraron en una base de EXCEL, pero sólo los que cumplieron los criterios de inclusión. Aquellas HC que presentaron algún criterio de exclusión, fueron borradas de la base.

6.6 Procesamiento Y Análisis Estadístico De Datos

Se analizaron los datos por medio de frecuencias relativas de los datos de la retinoscopía estática (refracción objetiva) y la refracción subjetiva.

6.7 Aspectos Bioéticos

Se solicitaron a la Universidad del Área Andina seccional Pereira los datos registrados en las historias clínicas y de esta manera se pasó al comité de bioética de la Universidad de La Salle el relevo de la necesidad de contar con el consentimiento según el decreto 8430 de 1993, definido en el artículo 14, como el acuerdo por escrito, mediante el cual el sujeto de investigación o en su caso, su representante legal, autoriza su participación en la investigación, con pleno conocimiento de la naturaleza de los procedimientos, beneficios y riesgos a que se someterá, con la capacidad de libre elección y sin coacción alguna.

Este es un estudio que está dentro de un macroproyecto llamado (Estimación de los valores oculares y visuales normales en una población de 5 a 19 años de edad de la ciudad de Pereira) del cual, se tomaron datos de la parte refractiva de cada uno de los pacientes; cabe resaltar que en el momento que se les realizó el examen se les explicó que estos datos iban a salir para varios estudios y/o investigaciones, por lo tanto esto no se especificó en el consentimiento.
7 MARCO ESTADÍSTICO

Para el análisis se tomó sólo en cuenta los valores del ojo derecho (OD), no obstante, para los anisométropes (aquellos que tuvieron diferencias ≥1.00D en su componente esférico y/o cilíndrico) se utilizó el resultado del ojo más amétrope, por ejemplo, si un sujeto tenía en el OD -1.00D y en el OI +1.50D, se clasificó a la persona con base en el dato del último ojo. Con esto en mente, se consideró como “Emétrope” quien tuvo un resultado (retinoscopia y/o subjetivo) de cilindro <0.75D y un equivalente esférico entre -0.25D a +0.50D (Tabla 1).

La ametropía fue clasificada acorde a su punto focal imagen (miopía, hipermetropía, astigmatismo) y a la severidad del defecto, tal como se muestra en la tabla 1. A la vez, el astigmatismo fue agrupado basado en donde se encontraron los puntos focales de sus imágenes de sus dos meridianos principales (miópico, hipermetrópico y mixto) así como también, la orientación del meridiano eje (con la regla – WR: 0º a 30º y 150º a 180º; contra la regla – AR: 60º a 120º; oblicuos – OBL: 31º a 59º y 121º a 149º).

Tabla 8. Criterio de clasificación de los defectos refractivos basados en la severidad

<table>
<thead>
<tr>
<th>Emetropía</th>
<th>Esférica Hipermetropía</th>
<th>Leve >+0.50 a +2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moderada >+2.00 a +5.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alta >+5.00</td>
</tr>
<tr>
<td>Ametropía</td>
<td>Cilíndrica Miopía</td>
<td>Leve >-0.25 a -3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderada >-3.00 a 6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alta >-6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leve 0.75 a 1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderada 1.75 a 2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alta >2.50</td>
</tr>
</tbody>
</table>

Elaboración propia

La prevalencia de los defectos refractivos fue calculada basada en las frecuencias relativas de los datos de la retinoscopia estática (refracción objetiva) y la refracción subjetiva. Los datos fueron analizados con el paquete estadístico STATA 13.0.
8 RESULTADOS

Fueron incluidos 921 historias clínicas, de las cuales 520 pertenecían a mujeres (56.5%) y 401 a hombres (43.5%). La diferencia en el equivalente esférico (retinoscopia) del ojo derecho (OD) contra el izquierdo (OI) (excluyendo a los anisométropos – 63 personas) no fue significativa (-0.02D, p:0.098), por lo que se decidió continuar el análisis sólo sobre el OD.

En la figura 5 se observa que las ametropías son más frecuentes al ser obtenidas mediante la retinoscopia, en esta, representan aproximadamente la mitad de los casos mientras que con la refracción subjetiva solo representan una cuarta parte de los sujetos evaluados.

Figura 5. Frecuencias relativas (porcentajes) para sujetos clasificados por la presencia de un defecto refractivo (emétrope – azul; amétrope – naranja) hallada mediante retinoscopia o la refracción subjetiva

Las ametropías esféricas medidas con retinoscopia fueron las más prevalentes representando el 86% de estos casos y como se ve en la figura 6, la hipermetropía es la que está más presente (21.2%), en tanto que la miopía es menos frecuente (16.1%). Respecto a la cantidad de defecto se evidenció que la prevalencia es mayor en los casos “leves”, no obstante, en el astigmatismo se presentó más recurrentemente en su forma “severa”.

La refracción subjetiva mostró de nuevo que las ametropías esféricas fueron proporcionalmente las más frecuentes (83%) del total de estos casos, pero, la miopía en este caso resultó ser más prevalente (13.3%) mientras que la hipermetropia fue tan solo el 7.6%. La presencia de astigmatismo también descendió levemente (4.3%). En cuanto a la magnitud del defecto, se observó la
misma tendencia que con la retinoscopía, pero se halló una tendencia a aumentar el número de sujetos con astigmatismo en cuanto mayor era la “severidad” de este.

Figura 6. Frecuencia de los defectos refractivos agrupados por su magnitud (leve, moderada, severa).

Con la retinoscopía se obtuvieron 58 sujetos astigmatas que fueron agrupados por el punto focal imagen de sus meridianos principales, encontrando que los catalogados como “mixtos” representaron un poco menos de la mitad de los casos (Fig. 7). Esta misma observación se halló con la refracción subjetiva en donde este tipo de astigmatismo (mixto) representó a más de la mitad los casos. Por otro lado, los astigmatismos con la regla fueron los más prevalentes (más del 90%) al ser medidos con cualquier procedimiento de refracción (Fig. 8)
Figura 7. Frecuencia del astigmatismo agrupado por el punto focal imagen de sus dos meridianos principales hallado con la retinoscopia y la refracción subjetiva

Figura 8. Porcentaje del astigmatismo organizado por la orientación del meridiano eje hallado con la retinoscopia y la refracción subjetiva
Figura 9. Frecuencia de defectos refractivos según grupo etario hallada con la refracción subjetiva y retinoscopía.

Con retinoscopia la hipermetropía fue las más prevalente en edades comprendidas de 5 a 9 años representando el (71%), mientras que con la refracción subjetiva la miopía fue la más recurrente en edades comprendidas de 15 a 19 años con un (56%)

Figura 10. Frecuencia de la Anisometropía esférica y cilíndrica hallada con la refracción subjetiva y la retinoscopia
La Anisometropía estuvo presente en 63 (6.84%) y 50 (5.43%) de los casos hallados con la retinoscopía y el subjetivo respectivamente (Fig. 10). Con ambos procedimientos se evidenció que el defecto cilíndrico fue el más frecuente.
9 DISCUSIÓN

Los resultados hallados en el presente estudio indican que las ametropías representaron el 43.11% en Retinoscopía y 25.19% en subjetivo, inferior a lo reportado en otros trabajos como: Arellano et al (56.11%) (3) Gómez et al (91%) (6), Hernández et al (91.4%) (7), Chaparro & Bello (88.9%) (8), Quintero & Díaz (57.14%) (9), Ramírez et al (79.5%) (45), Brusi et al (100%) (48), García (70.08%) (50). En los resultados mencionados anteriormente se encontraron discrepancias ya que pueden intervenir factores como: métodos y técnicas en la recolección de la información, los criterios para la clasificación de los defectos refractivos, el punto de neutralización que el observador considere, el posible error en la distancia de trabajo, potencia exacta de los lentes que se estén empleando, factores fisiológicos como la acomodación del paciente o del examinador (32).

Respecto a la Emetropía en el presente estudio fue más prevalente en el subjetivo con un 74.81% en tanto que para la retinoscopía fue 56.89%. Domínguez reportó un 68% de emetropía la cual fue hallada por medio de retinoscopía y clasificando los defectos refractivos de la siguiente manera: miopía a partir de -0.50, hipermetropía desde 0 y astigmatismo superior a -0.50 (49). De la misma manera, Otícica et al, realizaron un estudio retrospectivo con 40.873 datos en estudiantes de 7 a 15 años, considerando miopía >-0.75, hipermetropia >+2.00 D, y astigmatismo >-0.75 con un resultado de 95.7% emétropes (46). En el mismo orden de ideas Estévez mostró una frecuencia del 80.6% empleando la retinoscopía bajo Ciclopléjia (13).

En la clasificación de los defectos refractivos como se muestra en la figura 6, la hipermetropía fue el defecto más prevalente con un 21.18% en la Retinoscopía, en cambio para el subjetivo fue la miopía con 13.25%. García valoró el estado refractivo de 11.886 sujetos con Retinoscopía estática, autorefractómetros y refracción subjetiva, para la clasificación del defecto solo tuvieron en cuenta el equivalente esférico siendo para la emetropía desde -0.25 a +0.25, hipermetropia mayor +0.25 y miopía mayor de -0.25 dioptrías, obteniendo como resultado que la hipermetropía fue el defecto refractiv con una mayor prevalencia sobre toda la muestra con un 51.49% (50). Así mismo Gómez et al, en base a 1.502 RIPS correspondientes al año 2006 y 2007, diligenciados en tamizajes visuales encontraron que la hipermetropía fue el defecto más prevalente con un 50.6%. De la misma manera, de acuerdo con la magnitud mostró que la forma leve fue la más prevalente en ametropías esféricas tanto para la retinoscopia como en la refracción subjetiva mientras que para las ametropías cilíndricas la forma severa mostró un aumento, y esto en gran parte tiene correlación con el estudio de Ramírez quien obtuvo una prevalencia de 62.5% en la forma leve para todos los defectos refractivos, y en la forma severa un 6.5% (45), así mismo Estévez et al encontró un 83% en la forma leve.
En cuanto a la clasificación por grupo etario, como se indica en la figura 9, La hipermetropía tuvo un predominio de 9% en el rango de edad 5 a 10 años con la técnica de Retinoscopía y con la refracción subjetiva fue la miopía en un 5% en edades de 15 a 19 años. Esto concuerda con García quien evaluó a sujetos en edades comprendidas de 1 a 90 años, para lo cual los dividió en décadas, siendo la hipermetropía la más prevalente con un 73.43% en el rango de 1 a 10 años y 50.6% en el de 11 a 20 años (50). Por otro lado, molina et al en un estudio realizado en sujetos de 5 a 10 años encontró que la hipermetropía estuvo más presente en los grupos de edades de 5-6 y 8-9 años, sin embargo, el astigmatismo fue el más prevalente en toda la población estudiada (54).

Respecto al punto de focalización de sus meridianos principales como se aprecia en la figura 7, el astigmatismo mixto fue el más prevalente tanto para la Retinoscopía como para el subjetivo con 41.38% y 57.5%, seguido por el hipermetrópico con un 34% en retinoscopía y miópico con un 25% en refracción subjetiva. Por el contrario, Ramírez halló que el astigmatismo miópico fue el más prevalente con un 21%, seguido por el mixto 17.5%, e hipermetrópico 14.5% (45). Por otra parte, Daza y Murcia por medio del autorefractómetro determinaron que el defecto refractivo más recurrente en niños de 7 a 14 años fue el astigmatismo hipermetrópico con un 62.5% mientras que el miópico fue menor con 10.5% (52).

De acuerdo a los 58 sujetos catalogados como astigmas, según la orientación del meridiano eje hallado con la retinoscopía y la refracción subjetiva como se muestra en la figura 8, se encontró que el eje con la regla fue el más frecuente tanto para retinoscopía como para refracción subjetiva con un 94,83% y 92.5% respectivamente, y el menos recurrente el oblicuo con 1.72% en retinoscopía y este es similar al estudio de Leñero ya que el Porcentaje del astigmatismo con la regla fue: 95%, contra la regla: 4%, y oblicuo: 1,0%. (47)

Y finalmente, en la anisometropía tal como lo muestra la gráfica 9, donde el cilindro para retinoscopía y subjetivo fue de 6.3% y 4.34% correspondientemente, al compararlo con Oiticica et al emplearon refracción bajo Ciclopléjia, autorefractómetro y refracción subjetiva, por lo tanto, clasificaron la anisometropía como la diferencia mayor de 2.00 D en poder cilíndrico y esférico logrando así un 10.38% de toda la población (46).

Cabe mencionar que en este estudio se tuvo en cuenta

1. criterios para la clasificación en la magnitud del defecto refractivo
2. mecanismo de la profundidad de foco y de campo

La profundidad de foco, definida como la distancia en la retina sobre la cual una imagen óptica puede moverse sin alteración de la claridad, su valor oscila entre +0,04 D hasta +0,47 D (22). En segundo lugar, está la profundidad de campo,
siendo esta una zona de visión nítida en el campo visual, en la cual un objeto aparece enfocado y su existencia reduce la necesidad de una acomodación. Molina, et al revelaron que dicho valor fue aproximadamente de 0.09 D(51) estudios previos oscilan entre 0.8 y 1.2D, Campbell obtuvo una profundidad de campo de 0.87D para 2D de demanda de acomodación; Mordi y Ciuffeau reportaron 1.28D para 1D de demanda de acomodación, Yao encontró una profundidad de campo de 1.04D para 1,5D de demanda de acomodación (51).

Para ambos mecanismos resaltaron:
- tamaño pupilar
- luminancia del fondo
- contraste del test (51),(52)

Es importante tener en cuenta que existen dos mecanismos que en cierta medida compensan el defecto refractivo, como lo son la profundidad de campo y la profundidad de foco entendiéndose como un intervalo de distancias o un rango dióptrico en la imagen y objeto.
10 CONCLUSIONES

1. La prevalencia de defectos refractivos para la población estudiada fue 43.11% en retinoscopía y 25.19% en refracción subjetiva.

2. El defecto refractivo más prevalente fue la hipermetropía.

3. De acuerdo a la clasificación de las ametropías por su magnitud, los casos “leves” estuvieron más presentes, mientras que la forma “moderada” y “severa” obtuvieron un porcentaje menor.

4. El astigmatismo según la focalización de sus meridianos principales, el mixto fue el más prevalente.

5. El astigmatismo de acuerdo a la orientación del meridiano eje, con la regla estuvo en la mayoría de sus casos.

6. De acuerdo al grupo etario, para el rango comprendido de 5 a 9 años la hipermetropía prevaleció en refracción objetiva y la miopía fue más recurrente en el grupo de 15 a 19 años en refracción subjetiva.

7. Se concluye que hay dos mecanismos que se deben tener en cuenta como lo son: la profundidad de campo y la profundidad de foco.
11 REFERENCIAS

34. Ronderos Escamilla, N. Prueba piloto para la estandarización de la retinoscopia estática frente a la retinoscopia bajo cicloplejia con el protocolo reisvo. tesis de maestría. Universidad de La Salle Bogotá, 2014.

45. Ramírez Sánchez E, Arroyo Yllanes M, Magaña García M. Determinación del estado refractivo en niños sanos, en el Hospital General de México. 2003; 77(3). 120-123.

46. Oiticica Barbosa L, Tavares Scianni P, Ferrari Pérez M, Alvas Da Silva L, Martin D, Oiticica de Jesus M. Prevalence of ametropias and
anisometropias in elementary school children in schools from 14 cities in the State of Alagoas, vol.76 no.3 Rio de Janeiro.2017

47. Leñero Garcia JB. Prevalencia y caracterización de los errores refractivos en niños de 6 y 12 años que viven en la delegación gustavo a. madero, del distrito federal. Tesis Posgrado. Instituto politecnico nacional centro interdisciplinario de ciencias de la salud u.m.a. 2010.

49. Domínguez Rodríguez G. Prevalencia de problemas refractivos en los niños de 4º y 7º grado de la escuela joaquín gallegos lara en el contexto de los principios fundamentales de las escuelas promotoras de salud. Tesis de Pregrado. Universidad san Francisco de Quito; 2012.

