PROPUESTA PARA EL DISEÑO Y DISTRIBUCIÓN DE PLANTA PARA LAS INSTALACIONES DE PRODUCCIÓN DE BIOPINTURAS MEDIANTE TÉCNICAS DE INGENIERÍA

JEIMY NATALY ROA GÁMEZ
JEIMY ALEJANDRA RIVERA CAMARGO

PROYECTO DE GRADO

Jair Eduardo Rocha González
Director de Tesis

UNIVERSIDAD DE LA SALLE
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA INDUSTRIAL
BOGOTÁ
2017
Resumen

En el presente trabajo de grado se desarrolla una propuesta para el diseño y distribución en planta de la empresa BioPinturas S.A.S., ubicada en el municipio de Funza, Cundinamarca.

Para esto, se realizó una estimación de la capacidad de recursos necesaria para el cumplimiento de la demanda proyectada de dos años, con el fin de generar una alternativa válida para la ubicación de las áreas de trabajo.

Así mismo, se genera una propuesta para el diseño de almacén, mediante el análisis de jerarquización ABC y aplicación de las siete técnicas de almacenaje, buscando mejorar la localización de los productos y reducir la distancia de recorrido para la recolección de estos.

Finalmente, como apoyo se realiza una propuesta para la implementación de la metodología 5s, con el fin de aportar al diseño y distribución de la planta y del almacén, logrando beneficios como minimización de desperdicios, mejora en el flujo de material, desplazamiento de operarios, y orden y limpieza en las áreas.

Para evaluar una mejora en las propuestas sugeridas, se realiza un contraste de la propuesta frente a la situación actual de la empresa.

Palabras Clave
Diseño y distribución en Planta, Diseño de Almacén, Metodología 5s, Análisis de jerarquización ABC, flujo de material, Siete técnicas de almacenaje.
Abstract

In this degree work is developed a proposal for the design and distribution in plant of the company BioPinturas S.A.S. located in the municipality of Funza, Cundinamarca.

For this, an estimation of the resource capacity required to achieve the projected demand of two years was made, in order to generate a valid alternative for the location of the work areas.

Likewise, a proposal is generated for the warehouse design through the analysis of ABC hierarchy and application of the seven storage techniques, seeking to improve the location of the products and reduce the distance of travel for the collection of these.

Finally, as a support a proposal is made for the implementation of the 5s methodology in order to contribute to the design and distribution of the plant and the warehouse, achieving benefits such as waste minimization, improvement in material flow, displacement of operators, and order and cleanliness in the areas.

In order to evaluate an improvement in the suggested proposals, a contrast of the proposal is made against the current situation of the company.

Keywords
Design and distribution of the plant, Warehouse Layout, 5s Methodology, Analysis of ABC hierarchy, material flow, Seven storage techniques.
Agradecimientos

Dedicamos de manera especial a nuestra familia por su apoyo incondicional y acompañamiento durante nuestro proceso formativo.

A nuestro tutor por su ayuda y acompañamiento académico.

Y a la empresa BioPinturas por permitirnos realizar allí el proyecto.
Tabla de Contenido

Capítulo 1 Identificación del Proyecto

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Planteamiento del Problema</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Cifras Estadísticas Relevantes</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Diagnóstico de la Empresa BioPinturas S.A.S.</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Formulación del Problema</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Objetivos</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 Objetivo General</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 Objetivos Específicos</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Justificación y Delimitación del Proyecto</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Metodología</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Conclusiones</td>
<td>7</td>
</tr>
</tbody>
</table>

Capítulo 2 Estado del Arte

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Marco Teórico</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Diseño y Distribución de Planta</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Almacén</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Metodología 5s</td>
<td>11</td>
</tr>
<tr>
<td>2.1.4 Cadena productiva de pinturas</td>
<td>11</td>
</tr>
<tr>
<td>2.1.5 Localización de planta</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Marco Conceptual</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Logística</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Inventario</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Procesos de la gestión de almacenamiento</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4 Diseño del puesto de trabajo</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5 Pintura</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Conclusiones</td>
<td>14</td>
</tr>
</tbody>
</table>

Capítulo 3 Diseño y Distribución de Planta

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Programa de Producción</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1 Descripción</td>
<td>18</td>
</tr>
</tbody>
</table>
3.1.2 Pronóstico de producción ... 18
3.2 Proceso Tecnológico ... 26
 3.2.1 Diagramas de Operaciones .. 26
 3.2.2 Selección Tecnológica ... 28
3.3 Cálculo de Gasto de Tiempos de Trabajo ... 29
3.4 Cálculo de Maquinaria y Equipos Requeridos para la Producción 30
3.5 Cálculo de Mano de Obra Por Gastos de Tiempo 32
3.6 Cálculo de Materiales ... 32
3.7 Cálculo de Áreas ... 34
3.8 Planteamiento de Propuestas .. 36
 3.8.1 Systematic Layout Planning (SLP) .. 36
 3.8.2 Alternativas .. 38
3.9 Evaluación de Propuestas ... 41
 3.9.1 Método Evaluación por Adyacencia de Departamentos 41
 3.9.2 Método Evaluación por Costo de Manejo de Material 42
3.10 Tipo de Estructura de Distribución en Planta 43
3.11 Localización de Planta .. 46
3.12 Conclusiones .. 48

Capítulo 4 Diseño de Almacén ... 49
 4.1 Descripción ... 50
 4.2 Técnicas de Almacenamiento .. 52
 4.3 Propuesta del Diseño de Almacén .. 53
 4.3.1 Jerarquización ABC ... 53
 4.3.2 Diseño Bodega .. 56
 4.4 Conclusiones .. 58

Capítulo 5 Metodología 5s ... 59
 5.1 Diagnóstico inicial ... 60
 5.2 Clasificación .. 61
 5.2.1 Planta ... 62
 5.2.2 Punto de Venta ... 63
5.3 Orden .. 64
 5.3.1 Planta.. 67
 5.3.2 Punto de Venta .. 69

5.4 Limpieza ... 72

5.5 Pilares de Soporte .. 73
 5.5.1 Estandarización .. 73
 5.5.2 Disciplina ... 74

5.6 Plan de Implementación ... 74

5.7 Conclusiones ... 75

Capítulo 6 Indicadores de Comparación .. 77
 6.1 Indicadores Diseño y Distribución en Planta .. 78
 6.2 Indicadores Diseño de Almacén ... 79
 6.3 Indicadores Diseño Metodología 5s .. 81
 6.4 Conclusiones ... 82

Conclusiones y recomendaciones .. 83
 Conclusiones .. 83
 Recomendaciones ... 84

Bibliografía .. 85
Tabla 1 Descripción del estado actual de la empresa BioPinturas S.A.S.. 4
Tabla 2 Demanda de productos fabricados categorizados por familia de enero de 2015 a abril de 2017.. 18
Tabla 3 Pronósticos de demanda de la familia Adhesivos, Agregados y Pinturas................................. 20
Tabla 4 Errores de pronóstico de familia adhesivo, pintura y agregados.. 21
Tabla 5 Pruebas de entrada para simulación de la familia Abrasivo.. 23
Tabla 6 Pronósticos de demanda de la familia Abrasivo .. 25
Tabla 7 Matriz de Instancias .. 28
Tabla 8 Cálculo de gastos de tiempo.. 30
Tabla 9 Distribución de Productos en las máquinas de producción... 30
Tabla 10 Cálculo de las necesidades de maquinaria y equipos para la producción del 1 Año 31
Tabla 11 Cálculo de las necesidades de maquinaria y equipos para la producción del 2 Año 31
Tabla 12 Cálculo de mano de obra por gastos de tiempo.. 32
Tabla 13 Cálculo de materiales para familias Abrasivo, Adhesivos y Agregados...................................... 33
Tabla 14 Cálculo de materiales para familia Pintura .. 33
Tabla 15 Factores suplementarios de las áreas parciales ... 34
Tabla 16 Cálculo de áreas para cada estación de trabajo .. 35
Tabla 17 Cálculo de áreas complementarias.. 35
Tabla 18 Criterios de evaluación SLP.. 36
Tabla 19 Códigos de razón... 36
Tabla 20 Resumen del diagrama de relaciones SLP .. 38
Tabla 21 Evaluación por adyacencia de departamentos de las seis propuestas 41
Tabla 22 Matriz distancia desde-hasta de la propuesta 1 ... 42
Tabla 23 Matriz distancia desde-hasta de la propuesta 6 ... 42
Tabla 24 Matriz flujo de material desde-hasta... 42
Tabla 25 Resultados evaluación por costo de manejo de material... 43
Tabla 26 Matriz de gastos de transporte Qij de la propuesta 6 .. 45
Tabla 27 Matriz de solución optima... 45
Tabla 28 Matriz pareada AHP para localización .. 46
Tabla 29 Peso de criterios AHP .. 46
Tabla 30 Pesos resultantes de criterios evaluados AHP.. 47
Tabla 31 Resultados de evaluación general de zonas AHP .. 48
Tabla 32 Capacidad de los estantes... 50
Tabla 33 Capacidad de las vitrinas... 51
<table>
<thead>
<tr>
<th>Tabla 34</th>
<th>Productos en los estantes</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 35</td>
<td>Jerarquización ABC por familias</td>
<td>54</td>
</tr>
<tr>
<td>Tabla 36</td>
<td>Propuesta de ubicación de productos en el punto de venta BioPinturas en los estantes</td>
<td>55</td>
</tr>
<tr>
<td>Tabla 37</td>
<td>Propuesta de ubicación de productos en el punto de venta BioPinturas en las vitrinas</td>
<td>56</td>
</tr>
<tr>
<td>Tabla 38</td>
<td>Jerarquización por familias ABC bodega</td>
<td>58</td>
</tr>
<tr>
<td>Tabla 39</td>
<td>Jerarquización por familias ABC</td>
<td>58</td>
</tr>
<tr>
<td>Tabla 40</td>
<td>Resultados del cuestionario de auditoria 5s en la planta BioPinturas S.A.S.</td>
<td>60</td>
</tr>
<tr>
<td>Tabla 41</td>
<td>Resultados del cuestionario de auditoria 5s en el punto de venta BioPinturas S.A.S.</td>
<td>60</td>
</tr>
<tr>
<td>Tabla 42</td>
<td>Total de tarjetas propuestas para la planta BioPinturas S.A.S.</td>
<td>63</td>
</tr>
<tr>
<td>Tabla 43</td>
<td>Total de tarjetas propuestas para el punto de ventas BioPinturas S.A.S.</td>
<td>64</td>
</tr>
<tr>
<td>Tabla 44</td>
<td>Código de colores para señalización 5s</td>
<td>65</td>
</tr>
<tr>
<td>Tabla 45</td>
<td>Resumen de inversión para implementación de metodología 5s</td>
<td>75</td>
</tr>
<tr>
<td>Tabla 46</td>
<td>Evaluación por adyacencia de departamentos Propuesta Vs Actual</td>
<td>78</td>
</tr>
<tr>
<td>Tabla 47</td>
<td>Matriz distancia desde-hasta de la propuesta</td>
<td>78</td>
</tr>
<tr>
<td>Tabla 48</td>
<td>Resultados evaluación por costo de manejo de material</td>
<td>79</td>
</tr>
<tr>
<td>Tabla 49</td>
<td>Matriz de gastos de transporte (Q_{ij}) del estado actual de la planta</td>
<td>79</td>
</tr>
<tr>
<td>Tabla 50</td>
<td>Distancia recorrida para recolección de pedidos en el almacén</td>
<td>80</td>
</tr>
<tr>
<td>Tabla 51</td>
<td>Resultados del cuestionario de auditoria 5s en BioPinturas S.A.S.</td>
<td>81</td>
</tr>
</tbody>
</table>
Lista de Figuras

Figura 1. Producción en Fábrica de pinturas .. 2
Figura 2. Exportaciones de Pinturas. ... 2
Figura 3. Ventas mensuales de BioPinturas S.A.S .. 3
Figura 4. Participación semestral de ventas de BioPinturas S.A.S. 3
Figura 5. Definición de los principios de la metodología 5s 11
Figura 6. Esquema de la cadena productiva para la fabricación de pinturas 12
Figura 7. Mapa de procesos de la gestión de almacenes .. 14
Figura 8. Diagrama de operaciones de la familia adhesivos 26
Figura 9. Diagrama de operaciones de la familia agregados y el producto Carraplast... 26
Figura 10. Diagrama de operaciones de la familia pinturas y abrasivo 27
Figura 11. Diagrama de operaciones del producto Graniplas 27
Figura 12. Esquema de vectores secuenciales .. 28
Figura 13. Esquema tecnológico .. 29
Figura 14. Diagrama de relaciones SLP .. 37
Figura 15. Representación de las áreas del diagrama de relaciones en cuadrado 38
Figura 16. Primera propuesta del diagrama adimensional de bloques 39
Figura 17. Segunda propuesta del diagrama adimensional de bloques 39
Figura 18. Tercera propuesta del diagrama adimensional de bloques 39
Figura 19. Cuarta propuesta del diagrama adimensional de bloques 40
Figura 20. Quinta propuesta del diagrama adimensional de bloques 40
Figura 21. Sexta propuesta del diagrama adimensional de bloques 40
Figura 22. Diagrama x-Z para la selección de la estructura tipo espacial 44
Figura 23. Propuesta de estanterías para bodega .. 57
Figura 24. Propuesta de diseño de tarjeta roja ... 62
Figura 25. Propuesta de diseño de tarjeta amarilla .. 62
Figura 26. Ejemplo propuesta señalización del tomacorriente 65
Figura 27. Propuesta señalización de salidas de evacuación 66
Figura 28. Propuesta de señalización del extintor .. 66
Figura 29. Propuesta de organización de herramientas en planta 67
Figura 30. Propuesta de clasificación de materia prima en planta 68
Figura 31. Propuesta de señalización caja y panel de energía en planta 68
Figura 32. Propuesta soporte para bicicletas ... 68
Figura 33. Propuesta y ejemplo de señalización de producto en punto de venta... 69
Figura 34. Propuesta de señalización de capacidad de estanterías... 69
Figura 35. Propuesta de señalización de catálogo de pintura.. 70
Figura 36. Propuesta de señalización de materiales de oficina.. 70
Figura 37. Propuesta de organizador de llaves y candados.. 71
Figura 38. Propuesta de señalización de herramientas zona de preparación de productos................................. 71
Figura 39. Propuesta diagrama Gantt para implementación de 5s.. 75
En este primer capítulo se contextualiza el enfoque del proyecto, reconociendo la situación actual de la empresa, presentando así el planteamiento y formulación del problema, los objetivos, la justificación, y la metodología a desarrollar.

- El planteamiento del problema describe cifras estadísticas relevantes en el sector y un diagnóstico actual de la empresa.
- En la formulación del problema se evidencia la idea de investigación resaltando así, las opciones de mejora que pueden ser desarrolladas.
- En los objetivos se establece la finalidad general y específica del proyecto.
- Dado lo anterior, se explican las razones y motivos que validan la realización del proyecto junto a su delimitación.
- Finalmente, se presenta la secuencia de actividades a desarrollar con el fin de llevar a cabo el cumplimiento de los objetivos establecidos anteriormente.
1.1 Planteamiento del Problema

1.1.1 Cifras Estadísticas Relevantes.

De acuerdo a información estadística disponible, el Departamento Administrativo Nacional de Estadística (DANE), presentó un boletín informativo donde se establecen los valores de producción para los principales grupos industriales en la economía colombiana, de los cuales la participación de otros productos químicos asciende a un 6.4% equivalentes a $13.554.456 en producción bruta, respecto al total de la producción nacional durante el periodo comprendido entre el 2002 y el 2015.

De manera similar, la producción en fábrica de pinturas en general muestra un comportamiento ascendente en ventas, tal como se muestra en la Figura 1, de la cual es posible establecer que para el año 2014 se presenta un aumento del 6.8% respecto al 2013, siendo este significativo al compararse con los resultados de los años 2013 y 2012, en los cuales se evidencia una disminución del 1.2%.

![Producción en Fábrica de Pinturas](image1)

Figura 1. Producción en Fábrica de Pinturas. Fuente: Autores

En el caso de las exportaciones de pinturas, se presenta un aumento de la demanda en el periodo del año 2002 al 2007, siendo el 2007 el año con mayor demanda. Por otro lado, en el periodo comprendido entre el 2007 y el 2010 se presentó una reducción, y a partir de este año se observa un comportamiento constante.

![Exportaciones de Pinturas](image2)

Figura 2. Exportaciones de Pinturas. Fuente: Autores
1.1.2 Diagnóstico de la Empresa BioPinturas S.A.S.

Dentro de este ambiente económico, BioPinturas S.A.S. es una empresa familiar dedicada a la fabricación de pinturas, anticorrosivos, esmaltes, adhesivo para baldosa, vinilo, entre otros productos, además de esto, se dedica a la comercialización de productos para la construcción y remodelación.

Recientemente, esta organización ha decidido realizar una ampliación en las instalaciones de la planta de producción, así como en el punto de venta. Basándose en los resultados de un análisis de las ventas presentes en los últimos meses (Ver Figura 3), es posible afirmar un aumento progresivo de ésta, en el primer semestre del 2016, frente a las ventas totales en el año 2015, como se presenta en la Figura 4.

![Figura 3. Ventas mensuales de BioPinturas S.A.S. Fuente: Autores](image)

![Figura 4. Participación semestral de ventas de BioPinturas S.A.S. Fuente: Autores](image)

A continuación, se muestra una pequeña caracterización de las condiciones de trabajo presentes en la empresa BioPinturas S.A.S., de donde es posible afirmar que la planta de producción no cuenta con espacios definidos para la ubicación adecuada de las máquinas, así como tampoco de condiciones adecuadas para la ubicación de las materias primas, esto es atribuible a la ausencia de asignación de áreas de almacenamiento, factores que originan dispersión de materias primas y elementos de producción en diferentes lugares de la planta, dificultando el flujo y recorrido de operarios y materiales, estos pueden ser consultados de manera más específica y detallada en la Tabla 1 mostrada a continuación.
Tabla 1
Descripción del estado actual de la empresa BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Registro fotográfico</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En el área de Producción se cuenta con una maquina agitadora, una para estuco, una para Pegaenchape y un trompo. Las máquinas no cuentan con un área específica de producción, por lo que se encuentran dispersas en la planta. De igual forma, la materia prima se encuentra a su alrededor, obstaculizando espacio para el desplazamiento de operarios, transporte de materiales y afectando la fluidez del proceso. En el almacenamiento de la planta se cuenta con químicos, materias primas y empaques necesarios para el proceso de producción de las pinturas. De igual manera, no se dispone de un espacio establecido para estos elementos, por lo que los materiales se encuentran dispersos por la planta, generando obstáculos para el desplazamiento de materiales y operarios.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Punto de Venta

Se comercializan 112 productos entre los que se encuentran 15 productos bajo la marca BioPinturas. Los productos a la venta no han sido organizados por una técnica de almacén, por lo cual la empresa requiere de una propuesta que ayude a minimizar las distancias de localización del producto, y por lo tanto disminuir los tiempos de entrega a los clientes.

Fuente: Autores
1.2 Formulación del Problema

Ante las cifras estadísticas y el diagnóstico inicial realizado para BioPinturas S.A.S., se evidencia que la empresa requiere un diseño y distribución de planta que tendrá como propósito la mejora del flujo de material en las operaciones de transformación y almacenamiento, con el fin de generar un ahorro en el área ocupada, disminuyendo la congestión y los tiempos de ciclo por mejora en el transporte, al usar análisis de datos y aplicación de metodologías para la distribución en planta.

De igual manera, este proyecto pretende tener un impacto en facilitar la localización de los productos en el Almacén, a través del diseño del mismo para el punto de venta, con la consiguiente mejora en cuanto al orden físico en los elementos y secciones del almacén, obtenidas con el uso de técnicas de almacenaje.

Por lo anterior, se propone diseñar una distribución de la planta y almacén, apoyada por la filosofía 5s, con el fin de asegurar el aumento de la productividad y las condiciones del lugar de trabajo.

1.3 Objetivos

1.3.1 Objetivo General.

Proponer un diseño y distribución en planta para la planta de producción de BioPinturas, bajo un enfoque de mejoramiento en los procesos de flujo y transporte de materiales, almacenamiento y formulación de políticas de ordenamiento de puestos de trabajo, con técnicas de ingeniería.

1.3.2 Objetivos Específicos.

1. Realizar una propuesta para la determinación del diseño y distribución de planta de los puestos de trabajo en la planta de producción de BioPinturas, mediante una metodología cuantitativa.
2. Definir una propuesta para el diseño de bodega adecuado que contribuya a facilitar las operaciones de abastecimiento y distribución en la planta de BioPinturas a través de técnicas de almacenaje.
3. Proponer un plan básico de mejoramiento de los puestos de trabajo en BioPinturas, bajo la perspectiva de la metodología 5s, con técnicas de planeación y programación de operaciones.
4. Establecer unas medidas de comparación entre la operación actual y el sistema productivo propuesto que puedan distinguir el impacto del trabajo proyectado a través de técnicas estadísticas, matemáticas o por indicadores.

1.4 Justificación y Delimitación del Proyecto

Actualmente la empresa BioPinturas S.A.S., ha tenido un crecimiento en la demanda del 73% en el segundo semestre del 2015, respecto al primer semestre del 2016, debido a esto, la empresa ve la necesidad de trasladarse a un lugar que brinde una mayor área disponible que tenga la capacidad de cumplir la proyección de la demanda dirigida al crecimiento.
Este proyecto se realiza con el fin de brindar a la empresa una propuesta de mejoramiento en sus procesos productivos, aportándole a ésta la posibilidad de generar un entorno de trabajo eficiente, a partir del incremento de la producción, disminución de los retrasos, y una mejor distribución del espacio, manteniéndolo ordenado, limpio y seguro. Generando beneficios a la empresa en el aumento de la productividad y disminución de costos, crecimiento en el mercado, y reconocimiento de marca en el municipio de Funza Cundinamarca y sus alrededores.

El proyecto contará con una delimitación que restringe su alcance:

a. Temporal: El desarrollo del proyecto se planea para una duración de 4 meses, teniendo en cuenta un mes de holgura. De igual manera, se considera aproximadamente una duración de un (1) mes por cada una de las fases.

c. Temática: La realización de la propuesta se basa en técnicas de ingeniería industrial, concretamente en la metodología de distribución de planta, técnicas de almacenaje y la metodología 5S.

1.5. Metodología

A continuación se presenta la metodología propuesta para el desarrollo del proyecto, la cual se inspira en el desarrollo propuesto por Hernández y Woithe (Hernandez & Woithe, 1986) en la etapa de distribución en planta, Bartholdi y Hackman (Bartholdi & Hackman, 2014) en el diseño de almacenes, y Hiroyuki Hirano (Hirano, 1990) para la propuesta de acciones de la metodología 5S.

Fase I: Proponer un diseño y distribución de las áreas de trabajo de la empresa BioPinturas S.A.S. a partir de metodología de distribución de planta mediante técnicas de recolección y análisis de datos.

- Estimación de los recursos materiales para la planificación de uso de materias primas para la producción, de gastos de tiempo que se utilizarán en cada una de las líneas productivas, de los operarios necesarios para el funcionamiento productivo, de la maquinaria requerida que cumpla con la proyección de la capacidad futura de la empresa y de la demanda proyectada.
- Ordenamiento de las áreas productivas, administrativas y de almacenamiento.
- Formulación de propuesta de diseño y distribución en planta, usando para ello modelos de ordenamiento bajo un esquema de integración de espacios.

Fase II: Generar un diseño de almacén para el punto de venta y bodega a partir de técnicas de almacenamiento que faciliten el proceso de distribución para la búsqueda y recolección de productos, con el fin de reducir tiempos y aumentar la eficiencia
Identificar los factores internos y externos influyentes en el diseño del almacén apropiado para BioPinturas S.A.S.

Elaboración de un diseño del almacén que contenga los aspectos de ubicación, identificación y fácil manejo de material de los productos de BioPinturas.

Presentación de una propuesta valida del diseño de almacén para del punto de venta de BioPinturas S.A.S.

Fase III: Plantear una propuesta de implementación de la metodología 5s en la empresa de producción BioPinturas S.A.S., buscando minimizar el desperdicio y mantener las áreas de trabajo limpias y organizadas, mejorando así la productividad y la seguridad en los procesos.

Realizar un diagnóstico de operación de los puestos de trabajo en la actualidad, con el propósito de determinar las necesidades en cada uno. Este diagnóstico se realizará a través de una evaluación por observación directa de cada uno de los puestos de trabajo, para obtener un análisis a priori de la propuesta de las necesidades de clasificación, orden, limpieza, estandarización y disciplina en cada uno de los puestos de trabajo.

Realizar un diseño de aplicación de 5s para cada puesto de trabajo de acuerdo a las necesidades de clasificación, orden, limpieza, estandarización y disciplina, apoyadas por la señalización de áreas y demarcación de herramientas para la organización del puesto de trabajo.

Presentar una propuesta de plan de implementación en el cual se establezca secuencia, tiempo y costo de implementación del proyecto 5s en la planta de producción y almacén de BioPinturas S.A.S.

Fase IV: Contraste de la propuesta frente a la situación actual de la empresa.

Establecer los indicadores de evaluación del estado actual y propuesto de la empresa que evalúen algunos factores como mejora económica, tiempos de proceso, utilización de espacio, transito de materiales, productividad, entre otros, que proporcionen información requerida para el análisis comparativo.

Realizar un método de comparación de los indicadores obtenidos en la planta actual frente a los obtenidos con la propuesta diseñada.

Establecer las conclusiones y recomendaciones adecuadas para la planta de producción de BioPinturas S.A.S.

1.6 Conclusiones

Teniendo en cuenta el crecimiento de la demanda en el sector industrial de las pinturas y en la empresa BioPinturas S.A.S., además de que no se cuenta con una organización establecida en la planta y el punto de venta, se determina la necesidad de proponer un diseño y distribución de planta y almacén apoyada en la filosofía 5s.
Capítulo 2
Estado del Arte

En este capítulo se exponen aquellos enfoques o teorías de los temas a tratar en el desarrollo del proyecto, estableciendo de esta manera conceptos complementarios para el entendimiento del contexto de este mismo.

Teniendo en cuenta el enfoque del proyecto, en el marco teórico se presentan la información de diferentes fuentes para los temas de diseño y distribución de planta, diseño de almacén, metodología 5s, entre otros, destacando los beneficios que estas herramientas aportarían a la empresa. Así mismo se presentan los conceptos relevantes que serán tratados a lo largo del proyecto.
2.1 Marco Teórico

2.1.1 Diseño y Distribución de Planta.

La distribución en planta implica la ordenación física de los elementos industriales. Esta ordenación, ya practicada o en proyecto, incluye, tanto los espacios necesarios para el movimiento del material, almacenamiento, trabajadores indirectos y todas las otras actividades o servicios, como el equipo de trabajo y el personal de taller.

El trabajo de proyectar una distribución en planta, cubre un amplio campo. Puede comprender, solamente, un lugar de trabajo individual, o la ordenación completa de muchos acres de propiedad industrial. Pero en todos los casos, debemos planearlo para lograr una distribución eficiente. (Muther, 1981)

El objetivo principal del análisis de una distribución será la economía de espacio y la reducción de los recorridos de los circuitos. En este sentido, los errores que más comúnmente encontramos en muchas plantas industriales se concentran en aspectos como el espacio útil disponible que no se emplea de modo más racional y en los circuitos que, a menudo, son demasiado complicados. (Cuatrecasas, 2009)

Las principales ventajas al realizar un diseño de distribución de planta son: el incremento de la producción, disminución de los retrasos en la producción, ahorro de área ocupada, reducción del manejo de materiales, mayor utilización de la maquinaria, mano de obra y servicios, reducción de material en proceso, acortamiento del tiempo de fabricación, disminución de la congestión y confusión, disminución del riesgo para el material o su calidad, mayor facilidad de ajuste a los cambios de condiciones, y un mejor y más fácil control del costo. (Muther, 1981)

La disposición de los procesos y sus actividades en las plantas de producción, obedece básicamente a dos modelos:

- Disposición orientada al proceso, en la que los puestos de trabajo están agrupados funcionalmente, es decir, por el tipo de actividad que desarrollan, pero sin relación alguna con el producto que se mueve en cada operación hacia el puesto de trabajo adecuado, allí donde se halle.
- Disposición orientada al producto, en la que los puestos de trabajo están dispuestos en flujo, de acuerdo con la secuencia de operaciones a seguir por el producto a obtener. (Cuatrecasas, 2009)

Las decisiones relativas a la distribución entrañan determinar dónde se colocarán los departamentos, los grupos de trabajo de los departamentos, las estaciones de trabajo y los puntos donde se guardan las existencias dentro de una instalación productiva. El objetivo es ordenar estos elementos de manera que se garantice el flujo continuo del trabajo - en una fábrica - o un patrón de tránsito dado - en una organización de servicios -. En general, los elementos que intervienen en la decisión de la distribución son:

1. Especificación de los objetivos y los criterios que se aplicarán para evaluar el diseño. Dos criterios básicos de uso común son la cantidad de espacio que se requiere y la distancia que se debe recorrer entre los elementos de la distribución.
2. Cálculos de la demanda de productos o servicios del sistema.
3. Procesamiento que se necesitará, en términos del número de operaciones y la cantidad de flujo entre los elementos de la distribución.
4. Espacio que se necesitará para los elementos de la distribución.
5. Disponibilidad de espacio dentro de la instalación misma o, si se trata de una nueva, las configuraciones posibles para el edificio. (Chase, Jacobs, & Aquilano, 2009)

Existen diferentes metodologías para realizar un diseño y distribución en planta, entre estas se encuentran la aplicación de algoritmos para generar automáticamente el nuevo layout (Domínguez Gual, De los Ríos Saldarriaga, & Velásquez Henao, 2004), el uso de software para la simulación del nuevo diseño como lo son WinSQL y Blender (Collazos Valencia, 2013), y aplicación de metodologías donde se incluye la determinación de requerimientos de mano de obra, estaciones de trabajo, áreas para almacenamiento, establecimiento de áreas, localizar las actividades en el espacio disponible, y demás; entre estas metodologías se encuentran la de Apple, Reed (Tompkyns, White, Bozer, & Tanchoco, 2011) y la de Hernandez y Woithe (Hernandez & Woithe, 1986), siendo esta última la desarrollada en el presente trabajo.

2.1.2 Almacén.

El almacén es una instalación o parte de esta, destinada al almacenamiento, manipulación y conservación de mercancías equipadas tecnológicamente para estos fines. Los almacenes son los puntos en la cadena de suministro donde el producto se detiene, aunque sea brevemente, y se realizan procesos sobre este. Esto requiere de un gasto debido al consumo de espacio y tiempo. Los almacenes, aunque inmovilizan recursos, brindan ventajas como permitir una mejor organización en la distribución de las mercancías, posibilitar una correcta conservación de los productos y utilización racional de la técnica. (Hernández Muñoz)

Los beneficios económicos del almacenamiento ocurren cuando se reducen costos logísticos generales, cuando se puede lograr reducciones en el costo total, el almacén se justifica en lo económico. Cuatro beneficios económicos básicos son: 1. la consolidación y dispersión del volumen, 2. la clasificación, 3. el almacenamiento estacional, y 4. la logística inversa. Los almacenes proporcionan servicios que mejoran el aumento de ingresos de la línea principal. Cuando un almacén se justifica principalmente por el servicio, la razón de apoyo es un mejoramiento de las ventas que compensa por mucho el costo adicional. Los almacenes proporcionan el servicio como resultado de: 1. conservar existencias en el lugar, 2. conservar existencias en toda la línea, y 3. los servicios de valor agregado. (Bowersox, Closs, & Cooper, 2007)

Hay cuatro razones básicas para usar un espacio de almacenamiento: 1. reducir los costos de producción-transportación; 2. coordinar la oferta y la demanda; 3. ayudar en el proceso de producción, y 4. ayudar en el proceso de marketing. (Ballou, 2004)
Una vez determinada la misión de un almacén, la atención administrativa se concentra en establecer la operación. Un almacén típico contiene materiales, piezas y artículos terminados en movimiento. Las operaciones de almacén son el manejo y el almacenamiento. El objetivo es recibir el inventario de manera eficiente, guardarlo como se requiere, ensamblarlo en pedidos completos y hacer el embarque al cliente. (Bowersox, Closs, & Cooper, 2007)

2.1.3 Metodología 5s.

5s es una filosofía de trabajo que permite desarrollar un plan sistemático para mantener continuamente la clasificación, el orden y la limpieza, lo que permite de forma inmediata una mayor productividad y un mejor lugar de trabajo. Se trata de mejorar la seguridad, el clima laboral, la motivación del personal, la calidad, la eficiencia y, en consecuencia, la competitividad de la organización.

Esta metodología fue elaborada por Hiroyoki Hirano, y se denomina 5s, debido a sus iniciales de las palabras japoneses seiri, seiton, seiso, seiketsu y shitsuke, que significan clasificar, ordenar, limpiar, estandarizar y disciplina. (Hidalgo Castro, 2005)

<table>
<thead>
<tr>
<th>5S</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEIRI – CLASIFICAR</td>
<td>Mantener sólo lo necesario para realizar las tareas.</td>
</tr>
<tr>
<td>SEITON – ORDENAR</td>
<td>Mantener las herramientas y equipos en condiciones de fácil utilización.</td>
</tr>
<tr>
<td>SEISO – LIMPIAR</td>
<td>Mantener limpios los lugares de trabajo, las herramientas y los equipos.</td>
</tr>
<tr>
<td>SEIKETSU – ESTANDARIZAR</td>
<td>Mantener y mejorar los logros obtenidos.</td>
</tr>
<tr>
<td>SEIKETSUKU - DISCIPLINA</td>
<td>Cumplimiento de las normas establecidas.</td>
</tr>
</tbody>
</table>

Figura 5. Definición de los principios de la metodología 5s. Fuente: Basado en (Hidalgo Castro, 2005)

La implementación de las 5s produce los siguientes beneficios: cero cambios de útiles, cero defectos, cero despilfarros, cero retrasos, cero daños, cero averías, menos movimientos y traslados inútiles, menor nivel de existencias o de inventario, menor tiempo para el cambio de herramientas, menos productos defectuosos, mejorar la calidad, mejorar ambiente de trabajo, entre muchos otros beneficios. (Dorbessan, 2016)

2.1.4 Cadena productiva de pinturas.

Los productos de recubrimiento como las pinturas, lacas y barnices, sirven de doble propósito al proteger todo tipo de estructuras arquitectónicas de las inclemencias del tiempo, y de proporcionar una mayor estética a los productos y estructuras recubiertas.

El proceso de producción de las pinturas se desarrolla mediante el proceso de mezcla de resinas con pigmentos; a partir de esto se reconoce que el proceso de producción de las pinturas consiste
principalmente en un proceso físico de mezcla de materias primas, en vez de un proceso de reacciones químicas. Se define pintura, como un recubrimiento relativamente sólido y opaco, que sirve para la aplicación de capas delgadas. Los elementos constitutivos constan de un pigmento adecuadamente disperso en un líquido compuesto por una resina y un solvente volátil.

Las principales características del desarrollo de pinturas más tecnificadas son las siguientes: facilidad de aplicación, secado rápido, bajo olor, facilidad de limpieza, alta durabilidad e impermeabilidad. Los factores de influencia para la fabricación de pinturas son el brillo, el reflejo, la durabilidad, y el comportamiento frente al lavado.

A continuación, se muestra el flujo de la cadena productiva de pinturas, describiendo las materias primas requeridas para la fabricación y las máquinas necesarias para el proceso. (Departamento Nacional de Planificación DNP, 2016)

![Figura 6. Esquema de la cadena productiva para la fabricación de pinturas. Fuente: (Departamento Nacional de Planificación DNP, 2016)](image)

2.1.5 Localización de planta.

La localización de una planta parte de la necesidad de realizar una planificación a futuro de la empresa, con el fin de determinar el lugar o sitio óptimo, bien sea por la proyección donde se contemplen todos los factores relacionados al funcionamiento de la empresa o por el aprovechamiento de la oportunidad del mercado. Para la toma de decisión de localización de la planta se tienen en cuenta los factores considerados de mayor importancia para llevar a cabo la microlocalización, Edwin Garavito expone una base general de estos factores, entre ellos (Gatavito, 2002):

- Acceso a servicios básicos
- Impuestos
- Tipo de zona
- Servicios de transporte
- Seguridad de la zona
- Disponibilidad de mano de obra
- Proximidad de mercado
- Proximidad de proveedores
- Políticas locales, legales e impositivas

Existen diferentes técnicas para la localización de planta, entre los que se encuentra el método de centro gravedad (Domínguez Bocanegra, Domínguez Bocanegra, & Torres Muñoz, 2016) que consiste en el cálculo de un algoritmo de localización para una instalación considerando otras existentes, así mismo, el método de evaluación por punto de equilibrio (Baca, y otros, 2014) donde es posible analizar la relación existente entre la capacidad de producción de la nueva instalación y la ubicación. Por otro lado, existen modelos con funciones para solucionar el problema de localización de instalaciones, como la función de distancia euclidiana cuadrada con instalaciones puntuales y el modelo de distancia rectilínea con instalaciones puntuales (Farahani & Hekmatfar, 2009). Finalmente, se encuentran las técnicas subjetivas donde se evalúan los criterios importantes para la toma de decisión, entre estos el método Delphi (Baca, y otros, 2014), el árbol de decisión y el Análisis Jerárquico de Procesos AHP (Saaty, 1990).

2.2 Marco Conceptual.

2.2.1 Logística.

En Introduction to Logistics Systems Planning and Control se define la logística como el conjunto de actividades que trata de la planeación y control del flujo de material e información relacionada con organizaciones, en el sector público y privado. En general, su misión es obtener los materiales correctos en el lugar correcto, en el momento correcto, mientras se optimiza una medida de desempeño dada y satisfaciendo un conjunto de restricciones dados. (Ghiani, Laporte, & Musmanno, 2004)

“La logística se enfoca en la responsabilidad para diseñar y administrar sistemas con el fin de controlar el movimiento y el posicionamiento geográfico de la materia prima, el trabajo en proceso y el inventario terminado al costo total más bajo”. (Bowersox, Closs, & Cooper, 2007)

2.2.2 Inventario.

La Real Academia Española define inventario como: “Asiento de los bienes y demás cosas pertenecientes a una persona o comunidad, hecho con orden y precisión”. (Real Académia Española, 2016)

Se define como “el conjunto de todos aquellos productos que, independientemente de su grado de acabado y su finalidad, se utilizan o son el resultado de los procesos productivos fabriles”. (Matín-Andino, 2016)
2.2.3 Procesos de la gestión de almacenamiento.

Los procesos de la gestión de almacenes están compuestos por dos ejes transversales que representan los procesos principales – Planificación y Organización y Manejo de la información – y tres sub-procesos que componen la gestión de actividades y que abarca la recepción, el almacén y el movimiento.

![Diagrama de procesos de la gestión de almacenes](image)

Figura 7. Mapa de procesos de la gestión de almacenes. **Fuente:** Federación colombiana de logística

Recepción: La recepción es el proceso de planificación de las entradas de unidades, descarga y verificación tal y como se solicitaron mediante la actualización de los registros de inventario.

Movimiento: Es el subproceso del almacén de carácter operativo, relativo al traslado de los materiales/productos de una zona a otra de un mismo almacén o desde la zona de recepción a la ubicación de almacenamiento. (Federación Colombiana de Logística, 2016)

2.2.4 Diseño del puesto de trabajo.

El diseño del lugar de trabajo, herramientas, equipo y ambiente de trabajo, con el fin de encuadrarlos al operador, se llama ergonomía. El lineamiento principal es designar el lugar de trabajo para proporcionar espacio a más individuos respecto al tamaño y estructura del cuerpo humano. (Niebel & Freivalds, 2009)

2.2.5 Pintura.

Según la Norma Técnica Colombiana NTC 5812, se define la pintura como “material de recubrimiento pigmentado que, cuando se aplica a un sustrato, forma una película opaca que presenta propiedades protectoras decorativas o técnicas específicas”. (Instituto Colombiano de Normas Técnicas y Certificación, 2010)

2.3 Conclusiones

Se concluye que el diseño y distribución de planta incluye la ordenación física de los elementos y áreas, el cual puede generar un ahorro del área ocupada, una disminución de desplazamientos y del riesgo en cuanto a condiciones de calidad. Por otro lado, el correcto manejo del almacenamiento brinda ventajas que permite una mejor distribución de los productos facilitando así la localización de estos. Lo anterior,
apoyado en la metodología 5S permite lograr una mejora en el lugar de trabajo, al mantener las herramientas y equipos limpios y ordenados.
Capítulo 3
Diseño y Distribución de Planta

En este capítulo se desarrolla la primera fase de la metodología planteada, donde se propone un diseño y distribución de las áreas de trabajo de la empresa BioPinturas S.A.S., realizando una estimación de los recursos necesarios para los próximos dos años, partiendo de la proyección de la demanda generada a partir de los datos históricos de la empresa. De esta manera es posible calcular la capacidad de los recursos de tiempo, maquinaria, mano de obra y materiales necesarios para el periodo de abril del 2017 a abril de 2019.

Posterior a esto, se realiza la formulación de unas alternativas de diseño y distribución bajo un esquema de integración de espacios mediante la aplicación de la técnica Systematic Layout Planning SLP, con el propósito de ordenar las áreas productivas y de almacenamiento. Con el fin de seleccionar una de las alternativas propuestas, se empleó el método de evaluación por adyacencia de departamento y por costo de manejo de material.

Finalmente, se presenta la localización de la planta realizada mediante un Análisis de Jerarquización de Procesos AHP para verificar la mejor ubicación bajo la evaluación de los criterios definidos.
3.1 Programa de Producción

3.1.1 Descripción.

La empresa BioPinturas S.A.S. comercializa 112 productos de los cuales 12 productos son fabricados (Ver Anexo C), los cuales para el análisis de pronóstico fueron categorizados por familias como se muestra en la Tabla 2. Así mismo, la empresa proporcionó los datos de ganancias de ventas de enero de 2015 a abril de 2017, teniendo una ganancia total en los 28 meses de $568,169,646,27.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Producto</th>
<th>Demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasivo</td>
<td>Anticorrosivo</td>
<td>$10,542,301,84</td>
</tr>
<tr>
<td></td>
<td>Adhesivo para baldosas</td>
<td></td>
</tr>
<tr>
<td>Adhesivo</td>
<td>Pegante</td>
<td>$35,560,216,97</td>
</tr>
<tr>
<td></td>
<td>Porcelanato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuco</td>
<td></td>
</tr>
<tr>
<td>Agregados</td>
<td>Masilla</td>
<td>$92,924,525,55</td>
</tr>
<tr>
<td></td>
<td>Pasta</td>
<td></td>
</tr>
<tr>
<td>Pintura</td>
<td>Graniplas</td>
<td>$429,142,601,91</td>
</tr>
<tr>
<td></td>
<td>Carraplast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinilo</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores

Por otra parte, la empresa terceriza la producción de tres productos: sellador, PVA y tintes, este último correspondiente a la familia Pintura y los dos restantes a la familia Adhesivos. Estos tres productos son propios de la marca, pero al no ser producidos en la planta de BioPinturas S.A.S., no se toman para el análisis de datos para el diseño y distribución de planta.

3.1.2 Pronóstico de producción.

3.1.2.1. Selección de la Técnica De Pronóstico.

Para dar inicio a la proyección de producción en la empresa BioPinturas S.A.S., se decidió hallar los pronósticos mediante métodos objetivos, es decir, Series de Tiempo que son una secuencia de observaciones o registros de datos que se recopilan en intervalos de tiempos regulares y están organizados cronológicamente, en este caso diario, pero su análisis se realizó sobre las ventas mensuales de 28 meses.

Inicialmente para las familias adhesivo, pinturas y agregados, se realizó un análisis por modelos autorregresivos integrados de medias móviles ARIMA, con el fin de obtener un pronóstico que no superara un error porcentual medio absoluto (MAPE) del 30%, una vez realizado el proceso correspondiente,
analizadas las gráficas de autocorrelación e implementado el modelo ARIMA con el orden hallado mediante el análisis de los datos, se presentaba un MAPE superior al límite establecido, por lo que se decidió utilizar modelos autorregresivos donde se aprovecha la correlación entre las observaciones adyacentes para lograr unos pronósticos confiables.

En el modelo autorregresivo se retrasa la variable dependiente uno o más periodos y se utiliza como una variable independiente, este modelo expresa un pronóstico como una función de valores previos de esa serie de tiempo, como se describe en la ecuación (1). (Hanke & Reitsh, 1996)

\[\hat{y}_t = b_0 + b_2X_2 + b_3X_3 + \cdots + b_iX_i \]

En dónde, \(X_t = Y_{t-i} \), \(t \) es igual al periodo actual e \(i \) es igual al número de periodos de desfase para cada término incluido en el modelo de pronóstico.

Posteriormente para la familia Abrasivo se realizó una simulación que es según la definición de Thomas H. Naylor una técnica numérica para conducir experimentos en una computadora digital. Estos experimentos comprenden ciertos tipos de relaciones matemáticas y lógicas, las cuales son necesarias para describir el comportamiento y la estructura de sistemas complejos del mundo real a través de largos periodos de tiempo (Coss Bu, 1996) (Naylor, 1982). La simulación se basa en gran medida de las teorías de estadística y dado que el modelo de simulación es estocástico, debe ser capaz de generar variables aleatorias no-uniformes de distribuciones de probabilidad teóricas o empíricas. (Coss Bu, 1996)

A continuación, se presentan los pronósticos para los próximos dos años comprendidos de abril del 2017 a abril del 2019, la estimación de este tiempo partió del tamaño de datos históricos por lo que la proyección no puede ser superior con el fin de que esta sea confiable.

3.1.2.2 Adhesivos, Agregados y Pintura.

Se procedió a realizar los pronósticos de demanda de los siguientes dos años, es decir, de las fechas de mayo de 2017 a abril de 2019 de las familias Pintura, Agregados y Adhesivos basados en el método de autorregresivos, en el cual para su procedimiento se realizó un desfase de los datos y posteriormente un análisis de regresión.

Con los coeficientes de regresión obtenidos en los resultados del análisis de regresión, se realizó el cálculo de las demandas para los siguientes 24 meses, para esto se utilizan las siguientes ecuaciones resultantes.

Demanda Adhesivos:

\[\hat{y}_t = 1671039,33001 + 0,44596X_2 - 0,694128X_3 + 0,95659X_4 - 0,50105X_5 - 0,09965X_6 + 0,13903X_7 \]
\[- 0,22329X_8 - 0,22651X_9 + 0,15985X_{10} + 0,10943X_{11} - 0,57637X_{12} + 0,57183X_{13} \]

Demanda Pintura:

\[\hat{y}_t = 26495409,20186 - 0,37459X_2 + 0,16624X_3 + 0,19799X_4 - 0,30786X_5 + 0,50552X_6 - 0,48894X_7 \]
\[- 0,34837X_8 + 0,18593X_9 + 0,25225X_{10} - 0,19444X_{11} + 0,03031X_{12} + 0,08032X_{13} \]
Demanda Agregados:

\[
\hat{y}_t = 9251897.50529 - 0.31232X_2 + 0.19048X_3 - 0.41143X_4 - 0.05699X_5 + 0.08723X_6 - 0.09106X_7
- 0.24577X_8 - 0.03194X_9 - 0.12855X_{10} - 0.43992X_{11} - 0.08297X_{12} + 0.04778X_{13}
\]

Donde \(\hat{y}_t \) es el periodo de demanda a pronosticar para cada una de las familias, y \(X_3 \) es el dato de la demanda del periodo anterior. Utilizando la formulación anterior se determinó la demanda de ventas de los 24 meses, obteniendo los resultados que se muestran a continuación:

Tabla 3

Pronósticos de demanda de la familia Adhesivos, Agregados y Pinturas

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Adhesivos</th>
<th>Agregados</th>
<th>Pinturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>May</td>
<td>$3.046.356</td>
<td>$2.434.867</td>
<td>$19.942.178</td>
</tr>
<tr>
<td>2017</td>
<td>Jun</td>
<td>$1.741.331</td>
<td>$5.296.726</td>
<td>$7.428.106</td>
</tr>
<tr>
<td>2017</td>
<td>Ago</td>
<td>$1.704.011</td>
<td>$5.534.428</td>
<td>$23.214.587</td>
</tr>
<tr>
<td>2017</td>
<td>Sep</td>
<td>$2.067.130</td>
<td>$2.366.875</td>
<td>$18.168.157</td>
</tr>
<tr>
<td>2017</td>
<td>Nov</td>
<td>$1.553.944</td>
<td>$2.656.823</td>
<td>$16.465.397</td>
</tr>
<tr>
<td>2017</td>
<td>Dic</td>
<td>$1.713.817</td>
<td>$2.874.280</td>
<td>$24.483.075</td>
</tr>
<tr>
<td>2018</td>
<td>Ene</td>
<td>$2.692.593</td>
<td>$3.944.159</td>
<td>$30.105.883</td>
</tr>
<tr>
<td>2018</td>
<td>Feb</td>
<td>$793.972</td>
<td>$3.945.252</td>
<td>$10.511.049</td>
</tr>
<tr>
<td>2018</td>
<td>Mar</td>
<td>$2.547.825</td>
<td>$4.825.400</td>
<td>$21.551.628</td>
</tr>
<tr>
<td>2018</td>
<td>Abr</td>
<td>$2.542.921</td>
<td>$3.554.580</td>
<td>$18.582.633</td>
</tr>
<tr>
<td>2018</td>
<td>May</td>
<td>$1.582.078</td>
<td>$3.922.544</td>
<td>$24.242.791</td>
</tr>
<tr>
<td>2018</td>
<td>Jun</td>
<td>$1.346.777</td>
<td>$2.630.683</td>
<td>$26.839.483</td>
</tr>
<tr>
<td>2018</td>
<td>Jul</td>
<td>$2.401.505</td>
<td>$4.172.204</td>
<td>$10.940.653</td>
</tr>
<tr>
<td>2018</td>
<td>Ago</td>
<td>$1.521.720</td>
<td>$2.430.164</td>
<td>$19.302.423</td>
</tr>
<tr>
<td>2018</td>
<td>Sep</td>
<td>$1.311.890</td>
<td>$4.956.464</td>
<td>$27.478.783</td>
</tr>
<tr>
<td>2018</td>
<td>Oct</td>
<td>$899.097</td>
<td>$3.630.956</td>
<td>$17.708.703</td>
</tr>
<tr>
<td>2018</td>
<td>Nov</td>
<td>$3.102.069</td>
<td>$4.328.026</td>
<td>$26.738.091</td>
</tr>
<tr>
<td>2019</td>
<td>Ene</td>
<td>$1.617.884</td>
<td>$3.170.902</td>
<td>$19.540.106</td>
</tr>
<tr>
<td>2019</td>
<td>Abr</td>
<td>$1.205.156</td>
<td>$4.250.933</td>
<td>$21.579.177</td>
</tr>
</tbody>
</table>

Fuentes: Autores

Se proyecta para los dos siguientes años una demanda con un total de $42.691.792, $90.871.695 y $485.761.484 para Adhesivos, Agregados y Pinturas respectivamente.
Como criterio de determinación y aceptación del pronóstico, se calcula el error porcentual medio absoluto MAPE y la desviación media absoluta (Ver Anexo E y Tabla 4), así como la señal de rastreo, la cual varía en el rango de aceptación de [-4, 4], como se puede observar en las gráficas del Anexo F. A partir de los indicadores de desempeño aplicados en las proyecciones, se concluye que los pronósticos realizados basados en el método autorregresivo permanecen en los límites de aceptación.

Tabla 4

Errores de pronóstico de familia adhesivo, pintura y agregados

<table>
<thead>
<tr>
<th></th>
<th>MAPE</th>
<th>MAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesivos</td>
<td>22.52%</td>
<td>$309,942,44</td>
</tr>
<tr>
<td>Pintura</td>
<td>15.08%</td>
<td>$2,752,866,34</td>
</tr>
<tr>
<td>Agregados</td>
<td>20.02%</td>
<td>$622,983,00</td>
</tr>
</tbody>
</table>

Fuente: Autores

3.1.2.3 **Abrasivos.**

3.1.2.3.1 **Análisis de Entrada.**

El pronóstico de este producto no se realizó por autorregresivo debido a que su Porcentaje de Error Medio Absoluto no estaba dentro de los límites aceptables, dado lo anterior se procede a hacer el cálculo del pronóstico por medio de Simulación bajo la metodología presentada por Law y Kelton (Law & Kelton). Para lo que fue necesario hacer un análisis de entrada descrito en la Tabla 5, las pruebas que allí se encuentran fueron realizadas en el software de análisis predictivo IBM SPSS.

3.1.2.3.2 **Simulación**

Seguidas las pruebas anteriores se procede a realizar la simulación con la función de probabilidad Normal, se generaron 24 números aleatorios teniendo en cuenta la media y la desviación estándar de los datos históricos. Además, para llevar a cabo una proyección de datos confiable se calculó la longitud de corrida con un alfa de 0.05, obteniendo como resultado 99 corridas.

\[n = \left(\frac{\text{Desv} \times T_{a/2}}{D_s - D_h} \right)^2 \]

(5)

\(n \): Longitud de Corrida
\(\text{Desv} \): Desviación estándar de los datos históricos
\(T_{a/2} \): Valor en la distribución T Student
\(D_s \): Desviación estándar de datos aleatorios
\(D_h \): Desviación estándar de datos históricos

Una vez calculada la longitud de corrida, se realizó la simulación para el pronóstico de los siguientes 24 meses, obteniendo un total de $9,226,410.
<table>
<thead>
<tr>
<th>Prueba</th>
<th>Hipótesis Nula (H_0)</th>
<th>Hipótesis Alterna (H_1)</th>
<th>Se rechaza (H_0)</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleatoriedad Media</td>
<td>El conjunto de datos es aleatorio.</td>
<td>El conjunto de datos no es aleatorio.</td>
<td>Si (a \leq 0,05) 0,56</td>
<td>Existen suficientes pruebas estadísticas para aceptar la hipótesis (H_0), por lo tanto el conjunto de datos es aleatorio.</td>
</tr>
<tr>
<td>Aleatoriedad Mediana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneidad Kruskal-Wallis</td>
<td>Las (k) medianas son todas iguales.</td>
<td>Al menos una de las medianas es diferente.</td>
<td>Si (a \leq 0,05) 0,413</td>
<td>De esta manera teniendo en cuenta que la prueba se realizó para un total de (28) datos con una variable de agrupación por año, se acepta la hipótesis (H_0).</td>
</tr>
<tr>
<td>Homogeneidad de Varianza Levene</td>
<td>Las varianzas son iguales. (H_0: \sigma_1 = \cdots = \sigma_n)</td>
<td>Al menos un par de varianzas es diferente. (H_1: \sigma_i \neq \sigma_j) (i \neq j)</td>
<td>Si (a \leq 0,05) 0,781</td>
<td>Para lo que puede concluirse que con un nivel de significancia mayor a 0,05 existen suficientes pruebas para aceptar la hipótesis (H_0), es decir para el grupo de datos se encuentra que las varianzas son iguales.</td>
</tr>
<tr>
<td>Bondad y Ajuste</td>
<td>La colección de datos tiene función de distribución de probabilidad Normal.</td>
<td>La colección de datos no tiene función de distribución de probabilidad</td>
<td>Si (a \leq 0,05) 0,200</td>
<td>Con un nivel de significancia mayor a 0,05 existen suficientes pruebas para aceptar la hipótesis (H_0), los datos tienen distribución Normal.</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov para distribución Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bondad y Ajuste</td>
<td>La colección de datos tiene función de distribución de probabilidad Uniforme.</td>
<td>La colección de datos no tiene función de distribución de probabilidad</td>
<td>Si (a \leq 0,05) 0,000</td>
<td>A un nivel de significancia 0,05 existen suficientes pruebas para aceptar la hipótesis alterna.</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov para distribución Uniforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bondad y Ajuste</td>
<td>La colección de datos tiene función de distribución de probabilidad Exponencial.</td>
<td>La colección de datos no tiene función de distribución de probabilidad</td>
<td>Si (a \leq 0,05) 0,131</td>
<td>Con un nivel de significancia mayor a 0,05 existen suficientes pruebas para aceptar la hipótesis (H_0), los datos tienen distribución Exponencial.</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov para distribución Exponencial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{Fuente: Autores}
Tabla 6

Pronósticos de demanda de la familia Abrasivo

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Abrasivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>May</td>
<td>$398.116</td>
</tr>
<tr>
<td>2017</td>
<td>Jun</td>
<td>$420.818</td>
</tr>
<tr>
<td>2017</td>
<td>Jul</td>
<td>$355.918</td>
</tr>
<tr>
<td>2017</td>
<td>Ago</td>
<td>$413.192</td>
</tr>
<tr>
<td>2017</td>
<td>Sep</td>
<td>$367.892</td>
</tr>
<tr>
<td>2017</td>
<td>Oct</td>
<td>$358.207</td>
</tr>
<tr>
<td>2017</td>
<td>Nov</td>
<td>$424.357</td>
</tr>
<tr>
<td>2017</td>
<td>Dic</td>
<td>$368.574</td>
</tr>
<tr>
<td>2018</td>
<td>Ene</td>
<td>$377.435</td>
</tr>
<tr>
<td>2018</td>
<td>Feb</td>
<td>$366.555</td>
</tr>
<tr>
<td>2018</td>
<td>Mar</td>
<td>$423.807</td>
</tr>
<tr>
<td>2018</td>
<td>Abr</td>
<td>$316.460</td>
</tr>
<tr>
<td>2018</td>
<td>May</td>
<td>$353.425</td>
</tr>
<tr>
<td>2018</td>
<td>Jun</td>
<td>$376.267</td>
</tr>
<tr>
<td>2018</td>
<td>Jul</td>
<td>$430.858</td>
</tr>
<tr>
<td>2018</td>
<td>Ago</td>
<td>$382.603</td>
</tr>
<tr>
<td>2018</td>
<td>Sep</td>
<td>$398.265</td>
</tr>
<tr>
<td>2018</td>
<td>Oct</td>
<td>$398.752</td>
</tr>
<tr>
<td>2018</td>
<td>Nov</td>
<td>$353.070</td>
</tr>
<tr>
<td>2018</td>
<td>Dic</td>
<td>$409.045</td>
</tr>
<tr>
<td>2019</td>
<td>Ene</td>
<td>$403.019</td>
</tr>
<tr>
<td>2019</td>
<td>Feb</td>
<td>$403.507</td>
</tr>
<tr>
<td>2019</td>
<td>Mar</td>
<td>$367.737</td>
</tr>
<tr>
<td>2019</td>
<td>Abr</td>
<td>$358.530</td>
</tr>
</tbody>
</table>

Fuente: Autores

Como criterio de determinación y aceptación del pronóstico, se analizan los resultados de la simulación por el método de estimación, el cual hace uso del teorema del límite central (Coss Bu, 1996) (Walpole, Myers, & Myers, 1999), en donde la media del pronóstico debe estar de intervalo de confianza según la ecuación (6).

\[
\bar{X} - t_{\alpha/2} \frac{S}{\sqrt{n}} < \mu \leq \bar{X} + t_{\alpha/2} \frac{S}{\sqrt{n}} \quad (6)
\]

\(\bar{X}\): Media de los datos históricos

\(t_{\alpha/2}\): Valor en la distribución \(t\)

\(S\): Desviación estándar de los datos históricos

\(n\): Cantidad de datos históricos

\(\mu\): Media de los datos simulados

Con un alfa de 0.05, se verifica que la media de los datos simulados se encuentra dentro del intervalo de confianza, concluyendo que el resultado de la simulación es aceptable.

\[2773745,79 < 384834,682 \leq 479275,77\]
3.2 Proceso Tecnológico

3.2.1 Diagramas de Operaciones.

El proceso de producción de los productos marca BioPinturas se dividen dependiendo de la máquina en la que se fabrican estos. Teniendo en cuenta esto, en las Figuras 8, 9, 10 y 11, se muestran los diagramas de operaciones, donde puede observarse la cantidad de operaciones e inspecciones, y de igual manera el tiempo de producción por unidad que se realizan para cada uno de los procesos, mostrando que son procesos de secuencia lineal.

Figura 8. Diagrama de operaciones de la familia adhesivos. Fuente: Autores

Figura 9. Diagrama de operaciones de la familia agregados y el producto Carraplast. Fuente: Autores
Se debe aclarar que, en el caso de las familias agregados, pinturas y abrasivo, la empresa agrega al inicio los químicos de las materias primas y luego las demás materias primas pertinentes, estas materias primas se pueden observar en el Anexo G.

Figura 10. Diagrama de operaciones de la familia pinturas y abrasivo. *Fuente: Autores*

Figura 11. Diagrama de operaciones del producto Graniplas. *Fuente: Autores*
3.2.2 Selección Tecnológica.

Teniendo en cuenta la naturaleza de la producción de la empresa BioPinturas S.A.S. para sus 12 productos se llevó a cabo un análisis de la estructura tecnológica por productos y operaciones, con el fin de realizar una representación global de la secuencia tecnológica; para esto se realiza esquema de vectores secuenciales (Ver Figura 12).

![Figura 12. Esquema de vectores secuenciales. Fuente: Autores](image)

Se procedió a elaborar la matriz de instancias (Ver Tabla 7) con el objetivo de identificar la organización de las operaciones.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>Operación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agitadora</td>
</tr>
<tr>
<td>Anticorrosivo</td>
<td></td>
</tr>
<tr>
<td>Barniz</td>
<td></td>
</tr>
<tr>
<td>Carraplas</td>
<td></td>
</tr>
<tr>
<td>Esmalte</td>
<td></td>
</tr>
<tr>
<td>Estuco</td>
<td></td>
</tr>
<tr>
<td>Granaplas</td>
<td></td>
</tr>
<tr>
<td>Masilla</td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td></td>
</tr>
<tr>
<td>Pegacor</td>
<td></td>
</tr>
<tr>
<td>Pegante</td>
<td></td>
</tr>
<tr>
<td>Porcelanato</td>
<td></td>
</tr>
<tr>
<td>Vinilo</td>
<td></td>
</tr>
</tbody>
</table>

Se obtuvo un esquema tecnológico de la producción (Figura 13) el cual teniendo en cuenta la matriz de instancias nos muestra que, aunque la operación Agitadora y Estuco figuran como las más importantes en la instancia uno debe estar en paralelo junto con Pegaenchape y Trompo dada la naturaleza de la producción de los productos elaborados por la empresa.
3.3 Cálculo de Gasto de Tiempos de Trabajo

Para realizar el cálculo de los gastos de tiempo de trabajo, se procede a calcular el tiempo fondo operario Tfo, el cual es el tiempo disponible al año que tiene la planta para producción. Para esto se tiene en cuenta que el horario laboral de la empresa BioPinturas S.A.S. es de lunes a viernes de 8am a 5pm, y sábados de 8am a 12pm, además se tienen 15 días hábiles en enero para vacaciones. Dicho esto, el Tfo del primer año es de 1968,5 y del segundo año es de 1929,8 horas.

Se procede a calcular el tiempo en horas-hombre al año disponibles para la producción con la ecuación (7).

\[T_{nj'} = Tfo' \times ODP' \] \hspace{1cm} (7)

\(Tfo' \) : Tiempo fondo Operario

\(ODP' \) : Cantidad de operarios disponibles actualmente

A partir de lo anterior, con la ecuación (8) se realiza el cálculo del gasto tiempo de trabajo que se invierte para producir una unidad monetaria.

\[TN_{j'} = \frac{T_{nj'}}{Q'} \] \hspace{1cm} (8)

\(Q' \) : Cantidad procesada en planta comparativa

Una vez calculadas las horas necesarias para producir una unidad monetaria, se procede a calcular el tiempo norma total teniendo en cuenta la demanda proyectada para los dos años posteriores, mediante la ecuación 9.

\[t'Ni = TN_{j'} \times Q \times (1 + Kk) \] \hspace{1cm} (9)

\(Q \) : Demanda proyectada al año

\(Kk \) : Factor de productividad

Teniendo en cuenta lo anterior, se realizan los cálculos pertinentes para hallar la capacidad del tiempo disponible. Para esto se debe tener en cuenta que el valor del Factor de Productividad se estableció en un -9,1% y -5,8% para el primer y segundo año respectivamente, este factor se calculó teniendo en cuenta la disminución de la demanda proyectada para cada año respecto a la demanda corporativa o actual.
Tabla 8

Cálculo de gastos de tiempo

<table>
<thead>
<tr>
<th></th>
<th>1er Año</th>
<th>2do Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo disponible (hora-hombre/año) Tnj'</td>
<td>1968,5</td>
<td>1929,75</td>
</tr>
<tr>
<td>Gasto tiempo de trabajo (hora/$) Tnj'</td>
<td>5,72768E-06</td>
<td>5,61493E-06</td>
</tr>
<tr>
<td>Tiempo norma total (’Ni)</td>
<td>1626,847203</td>
<td>1710,87575</td>
</tr>
</tbody>
</table>

Fuente: Autores

Considerando los resultados de la Tabla 8, para cubrir la demanda pronosticada se requiere para los primeros doce meses un total de 1626,8 horas y para los siguientes 12 un total de 1710,9 horas al año. Teniendo en cuenta lo anterior, el porcentaje de ocupación del tiempo disponible es de 82,64% y 88,66% para el primer y segundo año respectivamente, por lo cual se concluye que el tiempo disponible cubre la demanda proyectada.

3.4 Cálculo de Maquinaria y Equipos Requeridos para la Producción

Para el cálculo de las necesidades de maquinaria y equipo, se hizo uso del método de los índices, el cual se basa en la utilización de índices técnico-económicos que reflejan: índices de rendimiento de máquinas e índices sumarios de gastos de tiempo de trabajo. (Hernandez & Woithe, 1986)

En este caso, aunque los productos correspondan a una familia definida para los pronósticos, algunos de estos se realizan en diferentes máquinas (Ver Tabla 9), dado esto, se calculó el porcentaje de participación de los productos Graniplas y Carraplast respecto a las ventas históricas de la familia pintura, siendo estos iguales a 8,67% y 1,86% respectivamente. Adicionalmente se calculó la demanda histórica y pronosticada de las maquinas teniendo en cuenta los productos que allí se fabrican.

Tabla 9

Distribución de Productos en las máquinas de producción

<table>
<thead>
<tr>
<th>Maquina</th>
<th>Producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitadora</td>
<td>Barniz</td>
</tr>
<tr>
<td></td>
<td>Esmalte</td>
</tr>
<tr>
<td></td>
<td>Anticorrosivo</td>
</tr>
<tr>
<td></td>
<td>Vinilo</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>Pegante</td>
</tr>
<tr>
<td></td>
<td>Adhesivo para baldosas</td>
</tr>
<tr>
<td></td>
<td>Porcelanato</td>
</tr>
<tr>
<td>Estuco</td>
<td>Estuco</td>
</tr>
<tr>
<td></td>
<td>Masilla</td>
</tr>
<tr>
<td></td>
<td>Pasta</td>
</tr>
<tr>
<td></td>
<td>Carraplast</td>
</tr>
<tr>
<td>Trompo</td>
<td>Graniplas</td>
</tr>
</tbody>
</table>

Fuente: Autores

Partiendo de lo anterior para calcular las necesidades de máquinas y equipos, utilizando índices de rendimiento de máquinas, se hizo uso de la ecuación (10) (Hernandez & Woithe, 1986):
Para determinar el índice de rendimiento por unidad de máquina fue necesario el uso de la ecuación (11), donde el factor de turno es igual a uno, dado que al realizar la ecuación (12) se cuenta con cuatro máquinas y un turno:

\[q' = \frac{Q'T_{\text{Total}}}{Z_{\text{Total}} * S'_{j}} \]

\[S'_{j} = \frac{\sum (Z'_{s} * s)}{\sum Z'_{s}} \]

\[Q'T_{\text{Total}} = \text{Volumen de producción anual histórico elaborado en la Planta} \]

\[Z'_{\text{Total}} = \text{Cantidad total de máquinas y equipos que participaron en el volumen de producción anual histórico} \]

\[S'_{j} = \text{Factor de turno} \]

\[s = \text{Número de turnos que trabajan las máquinas} \]

\[Z'_{s} = \text{Total de máquinas y equipos que participaron en la elaboración de la producción en los s turnos} \]

Tabla 10

Cálculo de las necesidades de maquinaria y equipos para la producción del 1 Año

<table>
<thead>
<tr>
<th>Variable</th>
<th>Máquina</th>
<th>Agitadora</th>
<th>Pegaenchape</th>
<th>Estuco</th>
<th>Trompo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda pronosticada Q Total</td>
<td>$215.231.757</td>
<td>$22.110.998</td>
<td>$50.998.136</td>
<td>$20.416.462</td>
<td></td>
</tr>
<tr>
<td>Demanda real Q' Total</td>
<td>$249.751.640</td>
<td>$19.686.415</td>
<td>$46.403.845</td>
<td>$23.792.473</td>
<td></td>
</tr>
<tr>
<td>Máquinas Z total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Turnos S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Factor de turno S'</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Índice de rendimiento q'</td>
<td>249751640,3</td>
<td>19686415</td>
<td>46403844,56</td>
<td>23792473,21</td>
<td></td>
</tr>
<tr>
<td>Máquinas totales Z*</td>
<td>0,99</td>
<td>1,29</td>
<td>1,26</td>
<td>0,99</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores

Tabla 11

Cálculo de las necesidades de maquinaria y equipos para la producción del 2 Año

<table>
<thead>
<tr>
<th>Variable</th>
<th>Máquina</th>
<th>Agitadora</th>
<th>Pegaenchape</th>
<th>Estuco</th>
<th>Trompo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda pronosticada Q Total</td>
<td>$228.584.103</td>
<td>$20.580.794</td>
<td>$48.922.723,48</td>
<td>$20.416.462,28</td>
<td></td>
</tr>
<tr>
<td>Demanda real Q' Total</td>
<td>$249.751.640</td>
<td>$19.686.415</td>
<td>$46.403.844,56</td>
<td>$23.792.473,21</td>
<td></td>
</tr>
<tr>
<td>Máquinas Z total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Turnos S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Factor de turno S'</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Índice de rendimiento \overline{q}'</td>
<td>249751640,3</td>
<td>19686415</td>
<td>46403844,56</td>
<td>23792473,21</td>
<td></td>
</tr>
<tr>
<td>Máquinas totales Z_*</td>
<td>1,05</td>
<td>1,20</td>
<td>1,21</td>
<td>0,99</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores

Con los resultados presentados en las Tablas 10 y 11 la empresa requerirá un total de cuatro máquinas, es decir las mismas con las que cuenta actualmente.

3.5 Cálculo de Mano de Obra Por Gastos de Tiempo

Para determinar el gasto de tiempo de trabajo requerido en la elaboración de la producción se hace uso de los índices sumarios implementando la ecuación (13). (Hernandez & Woithe, 1986)

$$O_{DPI} = \frac{T_{efectivo}}{T_{fo}}$$

$O_{DPI} = \text{Necesidades de obreros directos en la producción}$

$T_{efectivo} = \text{Gasto de tiempo total requerido para la producción proyectada}$

$T_{fo} = \text{Fondo de tiempo anual disponible promedio de un operario}$

El tiempo efectivo corresponde a 1626,84(h/año) y 1710,87(h/año) para el primer y segundo año respectivamente, y el tiempo fondo corresponde para el primer año a 1968,5 (h/año) y para el segundo año a 1929,8(h/año), de esta manera en la Tabla 12 se observa que se requiere un operario para llevar a cabo el total de la producción prevista, lo que quiere decir que la empresa no entra en la necesidad de contratar un nuevo operario para la planta hasta el mes de abril del 2019.

Tabla 12

Cálculo de mano de obra por gastos de tiempo

<table>
<thead>
<tr>
<th>Gastos de tiempo</th>
<th>1 Año</th>
<th>2 Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo efectivo</td>
<td>1626,847203</td>
<td>1710,87576</td>
</tr>
<tr>
<td>Tiempo fondo T_{fo}</td>
<td>1968,5</td>
<td>1929,75</td>
</tr>
<tr>
<td>Obreros $ODPi$</td>
<td>0,83</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Fuente: Autores

3.6 Cálculo de Materiales

Para calcular el requerimiento de materiales para la producción de los 12 productos fabricados por la empresa BioPinturas S.A.S., se realizó el cálculo utilizando la ecuación (14) del método de índices. (Hernandez & Woithe, 1986)

$$M = Q * Kk$$

Donde,

M: Requerimiento de materiales directos

Q: Volumen de producción proyectada

Kk: Índice sumario de consumo de materiales de unidades del programa de producción
La variable Kk se determina con la ecuación (15), mediante el cálculo de la relación entre el costo de materia prima y la ganancia de la venta del lote de producción, la cual nos permitirá proporcionar la demanda pronosticada a nivel de materia prima requerida para su cumplimiento.

\[Kk = \frac{Total\ MP}{Total\ PT} \]

(15)

Para el cálculo del total MP se tuvo en cuenta los costos de materia prima por un lote de producción (Ver Anexo H), y el Total PT se determinó mediante la ganancia obtenida por la venta de un lote de producción teniendo en cuenta el precio de venta de cada uno de los productos.

Una vez calculado el índice de consumo de materiales Kk, se procedió a calcular el requerimiento de materiales teniendo en cuenta la demanda proyectada para los dos años. El requerimiento de materia prima obtenido para los 24 meses para las familias Abrasivo, Adhesivo y Agregados es de $1.288.276, $15.670.220 y $11.931.395 respectivamente, considerando que no se tiene en cuenta la inflación del costo del material.

Tabla 13

Cálculo de materiales para familias Abrasivo, Adhesivos y Agregados

<table>
<thead>
<tr>
<th></th>
<th>Abrasivo</th>
<th>Adhesivos</th>
<th>Agregados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MP</td>
<td>$832.539</td>
<td>$1.116.000</td>
<td>$1.238.809</td>
</tr>
<tr>
<td>Total PT</td>
<td>$5.962.500</td>
<td>$2.750.000</td>
<td>$9.435.000</td>
</tr>
<tr>
<td>Factor de productividad Kk</td>
<td>0,14</td>
<td>0,406</td>
<td>0,131</td>
</tr>
<tr>
<td>Materiales 1er año</td>
<td>$641.084</td>
<td>$8.115.944</td>
<td>$6.120.140</td>
</tr>
<tr>
<td>Materiales 2do año</td>
<td>$647.192</td>
<td>$7.554.276</td>
<td>$5.811.255</td>
</tr>
</tbody>
</table>

Fuente: Autores

Por otro lado, teniendo en cuenta que en la familia Pintura cada uno de los productos se produce con distintas materias primas base, se procede a realizar el cálculo de requerimiento de materiales teniendo en cuenta la demanda proyectada individual, es decir, se tomó el porcentaje de participación de la demanda histórica de los productos Graniplas, Vinilo, Carraplast, Esmalte y Barniz con respecto a la familia pintura, obteniendo como resultado los porcentajes de participación de 8,7%, 71,1%, 1,9%, 16,8% y 1,6% para cada uno de los productos respectivamente. De esta manera, se calcula el volumen de producción proyectado para cada uno de los productos y se obtiene que el requerimiento de materia prima para los 24 meses para la familia Pintura es de $142.370.378,7.

Tabla 14

Cálculo de materiales para familia Pintura

<table>
<thead>
<tr>
<th></th>
<th>Graniplas</th>
<th>Vinilo</th>
<th>Carraplast</th>
<th>Esmalte-Barniz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MP</td>
<td>$195.351</td>
<td>$1.704.743</td>
<td>$412.936</td>
<td>$1.913.968</td>
</tr>
<tr>
<td>Total PT</td>
<td>$495.000</td>
<td>$5.400.000</td>
<td>$1.125.000</td>
<td>$12.712.500</td>
</tr>
<tr>
<td>Factor de productividad Kk</td>
<td>0,395</td>
<td>0,316</td>
<td>0,367</td>
<td>0,151</td>
</tr>
</tbody>
</table>
Finalmente, el requerimiento total de materiales para el primer y segundo año es de $83.882.426 y $87.377.843, obteniendo un costo total para la adquisición de materias primas de $171.260.270.

3.7 Cálculo de Áreas

El cálculo de áreas es una parte fundamental para la propuesta del diseño de planta, ya que un espacio o área utilizada erróneamente puede llegar a provocar efectos negativos tanto en lo económico como en el aumento de los recorridos de transporte. Por esto se genera el cálculo de las necesidades de áreas partiendo del área total de la planta con sus diferentes áreas parciales utilizables y no utilizables.

Este cálculo de las necesidades de área se realizó por factores de área, para lo que fue necesario el uso de la ecuación (16).

\[A_M = A_{MB}(1 + f_o + f_{MR} + f_h + f_A + f_T) \cdot f_{SO} (m^2) \]

(16)

\(A_M \) = Necesidades de área para un puesto de trabajo, en m\(^2\)/puesto de trabajo.

\(A_{MB} \) = Área básica de la máquina o equipo en m\(^2\)/máquina.

\(f_o \) = Factor suplementario para el área de operación.

\(f_{MR} \) = Factor suplementario para el área de mantenimiento y reparación.

\(f_h \) = Factor suplementario para el área de almacenamiento de herramientas para el puesto de trabajo.

\(f_A \) = Factor suplementario para el área de almacenamiento en el puesto de trabajo de la producción en el puesto de trabajo.

\(f_T \) = Factor suplementario para el área de transporte y manipulación en el puesto de trabajo

\(f_{SO} \) = Factor de solape entre las diferentes áreas parciales de un puesto de trabajo

La fábrica cuenta con un área total de 192,4 m\(^2\), donde se encuentra el área de producción conformada por cuatro máquinas y un tanque, área de almacenamiento, una oficina y un baño (Ver Plano 1). Con el fin de calcular acertadamente las necesidades del área de producción, se decidió optar por un método que parte del número de máquinas y de los factores suplementarios o factores de área. (Hernandez & Woithe, 1986)

Tabla 15

<table>
<thead>
<tr>
<th>(A_{MB})</th>
<th>(f_o)</th>
<th>(f_m)</th>
<th>(f_h)</th>
<th>(f_{ra})</th>
<th>(f_{ai}^{(*)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>3,4-2,4</td>
<td>0,6-0,4</td>
<td>0,7-0,3</td>
<td>2,4-1,8</td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>2,4-1,6</td>
<td>0,4-0,3</td>
<td>0,4-0,2</td>
<td>1,6-1,2</td>
<td></td>
</tr>
<tr>
<td>6-8</td>
<td>1,6-1,3</td>
<td>0,4-0,3</td>
<td>0,3-0,2</td>
<td>1,1-0,9</td>
<td></td>
</tr>
</tbody>
</table>

Nota: (*) El factor suplementario \(f_{ai} \) puede considerarse en el ordenamiento según el principio de taller en el intervalo 0,8 – 0,2 en función del tamaño de lote.

Fuente: Hernandez & Woithe (Hernandez & Woithe, 1986)
Para dar inicio a este cálculo, una vez se tuvo el área básica de la maquinaria se calculó para las cuatro máquinas el área de operarios (AO), área de manteamiento de maquina (AMR), área para almacenamiento de herramientas (AH), área de transporte y manipulación en el puesto de trabajo (AT), obteniendo finalmente el área requerida o las necesidades de área (AM), teniendo en cuenta los factores suplementarios de las diferentes áreas parciales, lo que generó finalmente una necesidad de área total de maquinaria igual a 33,34 m² (Ver Anexo I).

Tabla 16
Cálculo de áreas para cada estación de trabajo

<table>
<thead>
<tr>
<th>Estación</th>
<th>Máquina</th>
<th>A_{ao} (m²)</th>
<th>Cantidad de máquinas</th>
<th>A_{ao} (m²)</th>
<th>A_{am} (m²)</th>
<th>A_{am} (m²)</th>
<th>A_{at} (m²)</th>
<th>A_{am} (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agitadora</td>
<td>1,61</td>
<td>1</td>
<td>3,20</td>
<td>0,56</td>
<td>0,62</td>
<td>2,28</td>
<td>8,26</td>
</tr>
<tr>
<td>1</td>
<td>Trompo</td>
<td>2,18</td>
<td>1</td>
<td>3,01</td>
<td>0,52</td>
<td>0,54</td>
<td>2,16</td>
<td>8,41</td>
</tr>
<tr>
<td>1</td>
<td>Estuco</td>
<td>1,57</td>
<td>1</td>
<td>3,21</td>
<td>0,56</td>
<td>0,62</td>
<td>2,29</td>
<td>8,25</td>
</tr>
<tr>
<td>1</td>
<td>Pegaenchape</td>
<td>2,18</td>
<td>1</td>
<td>3,01</td>
<td>0,52</td>
<td>0,54</td>
<td>2,16</td>
<td>8,42</td>
</tr>
</tbody>
</table>

Fuente: Autores

Además de lo anterior, se debe tener en cuenta las áreas complementarias que hacen parte de la fábrica, pero no del área de producción, como lo es el área de almacenamiento, el baño y la oficina, obteniendo de esta manera el área disponible para la maquinaria (MQ) igual a 57,65 m².

Teniendo en cuenta que el área disponible es mayor que la necesidad del área total y deja 24,32 m² libres no es necesario hacer el cálculo del grado de solape entre las diferentes áreas parciales. Esto podría indicar que estas áreas parciales pueden depender de factores técnico-organizativos derivados de la organización del puesto de trabajo.

Tabla 17
Cálculo de áreas complementarias

<table>
<thead>
<tr>
<th>Área</th>
<th>Total (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Total Disponible</td>
<td>192,37</td>
</tr>
<tr>
<td>Factor de Construcción</td>
<td>0,80</td>
</tr>
<tr>
<td>Área Construible</td>
<td>154,47</td>
</tr>
<tr>
<td>Área - Paredes Columnas</td>
<td>149,31</td>
</tr>
<tr>
<td>Oficina</td>
<td>11,08</td>
</tr>
<tr>
<td>Almacenamiento MP</td>
<td>62,79</td>
</tr>
<tr>
<td>Baño</td>
<td>4,36</td>
</tr>
<tr>
<td>Almacenamiento PT</td>
<td>7,42</td>
</tr>
<tr>
<td>Empaque</td>
<td>6</td>
</tr>
<tr>
<td>Área para MQ</td>
<td>57,66</td>
</tr>
</tbody>
</table>

Fuente: Autores
Para verificar que el espacio de la oficina es adecuado para el supervisor de la planta, se tuvo en cuenta que los metros cuadrados por empleado deben estar entre los límites de 9,2903 y 18,5806 m². (Meyers & Stephens, 2006)

De igual manera, se comprueba que la cantidad de baños es adecuada para la planta, ya que como regla práctica es necesario un baño por cada 20 trabajadores, y no debe estar a más de 18,5806 metros del área productiva (Tompkyns, White, Bozer, & Tanchoco, 2011), lo anterior teniendo en cuenta que para los próximos dos años no se requiere un aumento en la mano de obra. Teniendo en cuenta que se trabaja con materias primas que generan exceso de polvo y con sustancias tóxicas, se propone instalar una ducha con agua fría y caliente (Ministerio de Trabajo y Seguridad Social, 1979).

3.8 Planteamiento de Propuestas

3.8.1 Systematic Layout Planning (SLP).

A fin de lograr una distribución lo más eficiente posible, se recurrió a este método cualitativo con el cual se espera determinar la posición de los distintos elementos que están relacionados con la planta en un espacio determinado, buscando identificar, valorar y visualizar todos los elementos involucrados en la implantación y las relaciones existentes entre ellos. (Muther, 1981)

En primer lugar, se tuvo en cuenta la escala de unos criterios de evaluación de relaciones Tabla 18 y las razones que describen la relación de acercamiento o alejamiento del área Tabla 19.

Tabla 18

Criterios de evaluación SLP

<table>
<thead>
<tr>
<th>Letra</th>
<th>Orden de proximidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absolutamente necesaria</td>
</tr>
<tr>
<td>E</td>
<td>Especialmente importante</td>
</tr>
<tr>
<td>I</td>
<td>Importante</td>
</tr>
<tr>
<td>O</td>
<td>Ordinariamente importante</td>
</tr>
<tr>
<td>U</td>
<td>Sin importancia</td>
</tr>
</tbody>
</table>

Fuente: Basado en Muther (Muther, 1981)

Tabla 19

Códigos de razón

<table>
<thead>
<tr>
<th>Código de razón</th>
<th>Razones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Esfuerzo</td>
</tr>
<tr>
<td>2</td>
<td>Flujo de material</td>
</tr>
<tr>
<td>3</td>
<td>Distancia</td>
</tr>
</tbody>
</table>
El número de relaciones existentes en el diagrama de relaciones y/o actividades, se calcula mediante la ecuación (17), con la finalidad de determinar el número máximo de relaciones totales por cada uno de los criterios A, E, I, y O, teniendo en cuenta que los porcentajes de relación entre áreas para cada uno de los criterios es del 5%, 10%, 15% y 25% respectivamente. (Muther, 1981)

\[
N = \frac{n(n - 1)}{2} = \frac{9(9 - 1)}{2} = 36 \text{ relaciones}
\]

Donde \(n \) es el número de instalaciones o áreas.

Una vez establecido lo anterior se procede a realizar el diagrama de relación de actividades, donde se enlistan en la columna del lado izquierdo los departamentos o áreas, y con base a los criterios de relación y las razones de acercamiento o alejamiento anteriormente descritas, se establece la relación existente entre dichas áreas.

![Diagama de relaciones SLP](image)

Figura 14. Diagrama de relaciones SLP. Fuente: Autores

Una vez se tuvo el diagrama de relaciones SLP se realizó el diagrama adimensional de bloques (Ver Tabla 20), donde se pudo establecer que para el área de la Agitadora es absolutamente necesario su proximidad con el Almacén MP, de igual forma es posible ver que es especialmente importante la cercanía de la Agitadora con el área de empaque y a su vez este con el área de Almacén de producto terminado, dado que entre estas dos áreas existe un flujo. Así mismo es importante que las máquinas Estuco, Pegaenchape
y Trompo, se encuentren cerca al Almacén de materia prima, finalmente es ordinariamente importante la cercanía del área de Empaque con las máquinas.

Tabla 20

Resumen del diagrama de relaciones SLP

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>E</th>
<th>I</th>
<th>O</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agitadora</td>
<td>5</td>
<td>7</td>
<td></td>
<td>2 - 3 - 4 - 5 - 8 - 9</td>
</tr>
<tr>
<td>2</td>
<td>Estuco</td>
<td>5</td>
<td>7</td>
<td></td>
<td>1 - 3 - 4 - 6 - 8 - 9</td>
</tr>
<tr>
<td>3</td>
<td>Pegaenchape</td>
<td>5</td>
<td>7</td>
<td></td>
<td>1 - 2 - 4 - 6 - 8 - 9</td>
</tr>
<tr>
<td>4</td>
<td>Trompo</td>
<td>5</td>
<td>7</td>
<td></td>
<td>1 - 2 - 3 - 6 - 8 - 9</td>
</tr>
<tr>
<td>5</td>
<td>Almacén MP</td>
<td>1</td>
<td>2 - 3 - 4</td>
<td>7</td>
<td>6 - 8 - 9</td>
</tr>
<tr>
<td>6</td>
<td>Almacén PT</td>
<td>7</td>
<td></td>
<td></td>
<td>1 - 2 - 3 - 4 - 5 - 8 - 9</td>
</tr>
<tr>
<td>7</td>
<td>Empaque</td>
<td>1 - 6</td>
<td>2 - 3 - 4 - 5</td>
<td></td>
<td>8 - 9</td>
</tr>
<tr>
<td>8</td>
<td>Oficina</td>
<td></td>
<td></td>
<td></td>
<td>1 - 2 - 3 - 4 - 5 - 6 - 7 - 9</td>
</tr>
<tr>
<td>9</td>
<td>Baño</td>
<td></td>
<td></td>
<td></td>
<td>1 - 2 - 3 - 4 - 5 - 6 - 7 - 8</td>
</tr>
</tbody>
</table>

Fuente: Autores

Por último, con el resumen del diagrama de relaciones se procede a asignar un espacio a cada área por medio de la distribución del diagrama adimensional de bloques, de forma que cada una de las nueve áreas se representan por medio de un cuadrado en el cual se ubican los criterios de ubicación como se muestra en la Figura 15, con esto se generan seis propuestas presentadas a continuación.

3.8.2 Alternativas.

Para generar estas propuestas se trató de lograr combinaciones que satisficiera tantos criterios de actividades como fueran posibles, por lo que se inició la ubicación de las áreas dándole privilegio a las órdenes de proximidad más importantes, de esta manera en todas las propuestas se comienza por ubicar adyacente con un lado en contacto el área de Almacén MP y el área de Agitadora ya que estas tienen orden “A” y seguidamente se trata de ubicar adyacentes la mayor cantidad de “E”, “I” o “O” posibles.
Figura 16. Primera propuesta del diagrama adimensional de bloques. *Fuente:* Autores

Figura 17. Segunda propuesta del diagrama adimensional de bloques. *Fuente:* Autores

Figura 18. Tercera propuesta del diagrama adimensional de bloques. *Fuente:* Autores
Figura 19. Cuarta propuesta del diagrama adimensional de bloques. *Fuente:* Autores

Figura 20. Quinta propuesta del diagrama adimensional de bloques. *Fuente:* Autores

Figura 21. Sexta propuesta del diagrama adimensional de bloques. *Fuente:* Autores
3.9 Evaluación de Propuestas

Para la selección de una de las diferentes alternativas que se generaron en el SLP, se procedió a realizar la evaluación de estas con el fin de reconocer cuál es la ubicación adecuada de las áreas y máquinas mediante los métodos de evaluación por adyacencia de departamentos y de flujo de material.

3.9.1 Método Evaluación por Adyacencia de Departamentos.

El método consiste en calificar cuantas relaciones se cumplen en las propuestas generadas teniendo en cuenta el diagrama de relaciones (Ver Figura 14), para esto se contaron aquellas áreas que eran adyacentes y de acuerdo al orden de proximidad se otorgó una calificación por relación cumplida (Cuevas Ramírez, 2004). En la Tabla 21, se presentan el número de relaciones cumplidas por cada tipo de relación, el puntaje total de este y la eficiencia de cada una de las propuestas generadas en el SLP.

Tabla 21

Evaluación por adyacencia de departamentos de las seis propuestas

<table>
<thead>
<tr>
<th>N° alternativa</th>
<th>Tipo de relación</th>
<th>Número de relaciones cumplidas</th>
<th>Calificación por relación cumplida</th>
<th>Total</th>
<th>Eficiencia de la alternativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>2</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td>76%</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores
De la tabla anterior se puede observar que las propuestas que tienen un mayor cumplimiento de relaciones son la propuesta 6 con un puntaje de 160 puntos y una eficiencia del 76% con respecto al puntaje máximo a obtener que es de 210 puntos, seguido de la propuesta 1 con un puntaje de 150 puntos y una eficiencia del 71%.

3.9.2 Método Evaluación por Costo de Manejo de Material.

Este método consiste en evaluar las propuestas por medio del costo de manejo del flujo de material de un área a otra. Para esto, se realizó la ubicación de las dos propuestas (Ver Plano 2 y 3) con mayor puntaje y eficiencia en el método de evaluación por adyacencias de departamentos en el plano, y a partir de esto se tomó la distancia entre áreas en las que existe flujo de material como se presenta en las Tablas 22 y 23.

Tabla 22
Matriz distancia desde-hasta de la propuesta 1

<table>
<thead>
<tr>
<th></th>
<th>Almacén MP</th>
<th>Agitadora</th>
<th>Estuco</th>
<th>Pegaenchape</th>
<th>Trompo</th>
<th>Empaque</th>
<th>Almacén PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén MP</td>
<td>-</td>
<td>9,2359</td>
<td>11,4853</td>
<td>10,2253</td>
<td>9,0939</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agitadora</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,5662</td>
<td>0</td>
</tr>
<tr>
<td>Estuco</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>5,3995</td>
<td>0</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3,4894</td>
<td>0</td>
</tr>
<tr>
<td>Trompo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,5409</td>
<td>0</td>
</tr>
<tr>
<td>Empaque</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,75</td>
</tr>
<tr>
<td>Almacén PT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autores

Tabla 23
Matriz distancia desde-hasta de la propuesta 6

<table>
<thead>
<tr>
<th></th>
<th>Almacén MP</th>
<th>Agitadora</th>
<th>Estuco</th>
<th>Pegaenchape</th>
<th>Trompo</th>
<th>Empaque</th>
<th>Almacén PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén MP</td>
<td>-</td>
<td>9,2359</td>
<td>8,7516</td>
<td>7,5535</td>
<td>11,2017</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agitadora</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,6384</td>
<td>0</td>
</tr>
<tr>
<td>Estuco</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3,5994</td>
<td>0</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3,052</td>
<td>0</td>
</tr>
<tr>
<td>Trompo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,8874</td>
<td>0</td>
</tr>
<tr>
<td>Empaque</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,5925</td>
</tr>
<tr>
<td>Almacén PT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autores

Por otro lado, en la Tabla 24 se observa el flujo de material existente entre áreas y maquinaria, teniendo en cuenta que no existe flujo de material de una maquina a otra.

Tabla 24
Matriz flujo de material desde-hasta

<table>
<thead>
<tr>
<th></th>
<th>Almacén MP</th>
<th>Agitadora</th>
<th>Estuco</th>
<th>Pegaenchape</th>
<th>Trompo</th>
<th>Empaque</th>
<th>Almacén PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén MP</td>
<td>-</td>
<td>$443.815.860</td>
<td>$99.920.860</td>
<td>$42.691.792</td>
<td>$40.832.925</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Una vez se calculan las distancias y el flujo de material entre las diferentes áreas, se calcula el costo de manejo de materiales (Cuevas Ramírez, 2004) como se muestra en la siguiente formulación:

\[C = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} f_{ij} d_{ij} \]

En donde,

\[C: \text{Costo total} \]

\[c_{ij}: \text{costo de manejar el material entre las áreas } i \text{ y } j \]

\[f_{ij}: \text{flujo de material } i \text{ y } j \]

\[d_{ij}: \text{distancia entre las áreas } i \text{ y } j \]

Considerando que la empresa no cuenta con un costo de transporte de material entre las diferentes áreas, se permite asumir que el costo de manejar el material es despreciable.

Una vez calculado el costo de las dos propuestas presentadas, se puede observar que la mejor propuesta en cuanto a costo de flujo de material se genera a través de la distribución presentada en la propuesta 6 con un costo de $ 10.109.614.455,27 y una distancia total recorrida de 53,24 metros. En donde, en comparación con la propuesta 1 se obtiene que la propuesta 6 es menor en un 18% en cuanto a la distancia recorrida y un 8% menor en cuanto a el costo de flujo de material.

Tabla 25

<table>
<thead>
<tr>
<th>Distancia total</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propuesta 1</td>
<td>$10.945.068.874,52</td>
</tr>
<tr>
<td>Propuesta 6</td>
<td>$10.109.614.455,27</td>
</tr>
</tbody>
</table>

Por último, se confirma que al igual que en el resultado del método de evaluación por adyacencia de áreas, la propuesta 6 es la ubicación más adecuada y eficiente para el diseño y distribución de planta (Ver Plano 3).

3.10 Tipo de Estructura de Distribución en Planta

El tipo de estructura está relacionado directamente con los principios de organización espacial de la empresa y a su vez con las características de funcionamiento de ésta, aplicando el método de selección de la estructura espacial basado en el grado de cooperación (x) (Hernandez & Woithe, 1986). Primero se
halló la intensidad de flujo del material que por la naturaleza de producción de la empresa BioPinturas S.A.S. es igual a cero entre las cuatro máquinas, ya que todas las operaciones requeridas para la elaboración de un producto se concentran en una sola máquina, seguido de esto se procede a calcular el grado de cooperación el cual puede ser determinado por la ecuación (18).

\[x = \frac{\sum_{i=1}^{Z} K_i}{Z} \]

(18)

\[K_i = \text{Número de uniones o relaciones productivas entre máquinas.} \]

\[Z = \text{Número de máquinas que intervienen en la producción.} \]

Dado lo anterior el grado de cooperación es cero y se puede ubicar de acuerdo al principio que rige el tipo de estructura individual EI ubicándolo de esta forma en el diagrama x-Z para la selección de la estructura tipo como se muestra en la Figura 22, en esta ET corresponde a la estructura taller, EG a la de grupo o red, EL a la estructura en líneas, y ETr estructura en tránsito.

La función objetivo de este método minimiza el gasto de transporte total y realizar una asignación de las áreas a las máquinas.

\[Q_{\text{Total}} = \sum_{j=1}^{Z} \sum_{i=1}^{L} Q_{ij} \cdot X_{ij} \]

Para las condiciones

\[\sum_{i=1}^{Z} X_{ij} = 1; (j = 1, 2, ..., Z) \]

\[\sum_{j=1}^{L} X_{ij} = 1; (i = 1, 2, ..., L) \]
\[X_{ij} = \begin{cases} 0 & (ij = 1, 2 \ldots, Z, L) \\ 1 & \end{cases} \]

Donde,

- \(Q_{ij} \): Gasto de trasporte obtenido cuando la máquina \(i \) está ordenada en el lugar \(j \) y está dado por \((l_{ik} \cdot S_{kj})\)
- \(X_{ij} = \text{Factor que refleja el estado de ordenamiento de una máquina } i \text{ en el lugar } j \)
- \((X_{ij} = 1, \text{cuando la máquina } i \text{ ocupa el lugar } j \) y \(X_{ij} = 0 \) en caso contrario\)
- \(k = \text{Elementos externos al sistema considerado con los cuales están relacionadas las } i \text{ máquinas} \)

Para esto se utilizaron las áreas de las máquinas de la propuesta seis y se ubican la matriz \(I_{ik} \) ($/año) y \(S_{kj} \) (m), se calculó la matriz de gastos de transporte, a partir de esta matriz \(Q_{ij} = I_{ik} \cdot S_{kj} \) (m$/año) y se dio inicio al proceso de transformación de esta por iteraciones sucesivas.

Tabla 26

Matriz de gastos de transporte \(Q_{ij} \) de la propuesta 6

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alm. MP</td>
<td>9,2359</td>
<td>8,7516</td>
<td>7,5535</td>
<td>11,2017</td>
</tr>
<tr>
<td>Alm. PT</td>
<td>4,4053</td>
<td>8,1947</td>
<td>6,0005</td>
<td>6,7243</td>
</tr>
<tr>
<td>Alm. MP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alm. PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empaque</td>
<td>3,3684</td>
<td>3,5994</td>
<td>3,052</td>
<td>2,8874</td>
</tr>
</tbody>
</table>

Fuente: Autores

En la Tabla 27 se presenta la matriz con la solución óptima resultante del método húngaro (Ver Anexo J), obteniendo la asignación de cada máquina en una parea determinada, esto se realiza seleccionando los elementos nulos de forma que no se repita la selección de un valor.

Tabla 27

Matriz de solución óptima

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitadora</td>
<td>701873449,4</td>
<td>600268722,9</td>
<td>0</td>
<td>1300222512</td>
</tr>
<tr>
<td>Estuco</td>
<td>14496122,9</td>
<td>0</td>
<td>0</td>
<td>102229889,3</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>0</td>
<td>99893338</td>
<td>2760046,373</td>
<td></td>
</tr>
<tr>
<td>Trompo</td>
<td>0</td>
<td>470851,1221</td>
<td>103608842</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Autores
Finalmente puede concluirse que según el método húngaro en el área uno debe ubicarse la máquina Pegaenchape, en la dos la máquina Estuco, en la tres la máquina Agitadora y en el área cuatro el Trompo. Debe tenerse en cuenta que este método no tiene presente las características técnicas de las máquinas Estuco y Agitadora las cuales requieren estar cerca de una pared ya que tienen una caja de energía y un panel de control, es por esta razón que se decide no cambiar de lugar estas máquinas.

3.11 Localización de Planta

Para determinar si la planta se encuentra en la mejor ubicación, se realizó un Análisis Jerárquico de Procesos AHP, la cual es una técnica matemática fundamentada en la evaluación del juicio subjetivo de varios individuos en la toma de decisiones con criterios objetivos. La técnica se aplicó con el fin de comprobar que los factores de localización de la planta en Funza Cundinamarca son los más adecuados. Para esto se definieron cuatro criterios con mayor influencia a la hora de tomar la decisión para la ubicación de la planta, los criterios de influencia para la toma de decisión son, el costo de servicios públicos, el costo de arriendo, la distancia entre la planta propuesta y el punto de venta y por último la competencia haciendo referencia a la oportunidad en el mercado. A continuación, se presenta la matriz pareada de estos criterios para la toma de decisión.

Tabla 28
Matriz pareada AHP para localización

<table>
<thead>
<tr>
<th>Servicios Públicos</th>
<th>Arriendo</th>
<th>Distancia Pto. Venta</th>
<th>Competencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios Públicos</td>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>Arriendo</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Distancia Pto. Venta</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Competencia</td>
<td>1/2</td>
<td>1/4</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Fuente: Autores

A partir de la matriz de comparación es posible obtener los pesos de los criterios anteriormente mencionados, con la finalidad de reconocer que criterio tiene una mayor influencia o importancia para la toma de la decisión. Como se puede observar en la Tabla 29, el criterio con mayor peso en el momento de tomar una decisión es el costo de arriendo de la planta con un peso de 0,47, seguido por la distancia entre la planta propuesta y el punto de venta con un peso de 0,28. Así mismo se obtiene que el valor de relación de consistencia entre los valores es menor a 0,1, demostrando la aceptación de los datos.

Tabla 29
Peso de criterios AHP

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios Públicos</td>
<td>0,16</td>
</tr>
<tr>
<td>Arriendo</td>
<td>0,47</td>
</tr>
<tr>
<td>Distancia Pto. Venta</td>
<td>0,28</td>
</tr>
</tbody>
</table>
De igual manera, se evaluaron las zonas consideradas para la ubicación de la planta teniendo en cuenta aquellas zonas que el gerente de la empresa proponía como opción, las cuales son los municipios de Funza y Mosquera en Cundinamarca, Fontibón y Álamos Industrial ubicados en Bogotá. En la Tabla 30 se observan los pesos de los criterios evaluados con el fin de reconocer cual es la mejor zona para ubicar la planta.

Tabla 30

Pesos resultantes de criterios evaluados AHP

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
<th>Zona</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios Públicos</td>
<td>0,16107</td>
<td>Funza</td>
<td>0,4658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fontibón</td>
<td>0,1611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mosquera</td>
<td>0,2771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Álamos industrial</td>
<td>0,0960</td>
</tr>
<tr>
<td>Arriendo</td>
<td>0,46582</td>
<td>Funza</td>
<td>0,4658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fontibón</td>
<td>0,0960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mosquera</td>
<td>0,2771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Álamos industrial</td>
<td>0,1611</td>
</tr>
<tr>
<td>Distancia Pto. Venta</td>
<td>0,27714</td>
<td>Funza</td>
<td>0,4658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fontibón</td>
<td>0,1611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mosquera</td>
<td>0,2771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Álamos industrial</td>
<td>0,0960</td>
</tr>
<tr>
<td>Competencia</td>
<td>0,09597</td>
<td>Funza</td>
<td>0,4658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fontibón</td>
<td>0,0960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mosquera</td>
<td>0,2771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Álamos industrial</td>
<td>0,1611</td>
</tr>
</tbody>
</table>

La zona más viable para ubicar la planta es Funza teniendo un peso sobre la decisión del 46.58%, seguido por Mosquera con un peso de 27.71%. Basado en el Análisis de Procesos Jerárquicos, se confirma que la planta se encuentra en el mejor lugar, ya que al ser un municipio los costos de arriendo y servicios públicos son más económicos que en la capital. Adicional, la posibilidad de un crecimiento en el mercado es más probable ya que en sus alrededores no cuenta con un competidor directo y dado a esto ha sido posible el reconocimiento allí. Teniendo en cuenta que el punto de venta se encuentra ubicado en Funza, los costos de transporte y tiempo son menores.
Tabla 31

Resultados de evaluación general de zonas AHP

<table>
<thead>
<tr>
<th>Decisión</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Funza</td>
<td>0.4658</td>
</tr>
<tr>
<td>Fontibón</td>
<td>0.1245</td>
</tr>
<tr>
<td>Mosquera</td>
<td>0.2771</td>
</tr>
<tr>
<td>Álamos industrial</td>
<td>0.1325</td>
</tr>
</tbody>
</table>

Fuente: Autores

3.12 Conclusiones

Los pronósticos de demanda para los cuatro productos generan un total para el primer año de $308.757.354 y para el segundo año de $319.794.028. De esta manera, realizando una comparación de la demanda histórica del último año, el adhesivo genera un aumento para el primer año del 12%, agregados del 13%, y abrasivo del 7%, y una disminución en pintura del 14%. Para el segundo año pronosticado se genera un aumento del 5% para la familia adhesivo, 7% para agregados y 8% para abrasivo, así como una disminución del 9% para pintura.

Para el cálculo de gastos de tiempo, se concluye que el porcentaje de ocupación del tiempo disponible es igual a 82,64% y 88,66% para el primer y segundo año, mostrando así que para el primer año se requiere un total de 1626,8 horas y para el segundo 1710,9 horas. Dado esto no es necesario incurrir en la contratación de un nuevo empleado, ya que en el actual se cubren los gastos de tiempo previstos. Así mismo, según los cálculos de maquinaria requerida no es necesario adquirir nuevas máquinas para cumplir con la demanda proyectada. En cuanto al cálculo de materiales, se concluye que en el primer año para abrasivo, adhesivo y agregados se tendrá un aumento en el costo de materia de 7,3%, 1,6% y 12,9% respectivamente, y una disminución del 14,2% para la familia pintura, mientras que en el segundo año se incurrirá un aumento de 8,3% y 7,2% para las abrasivo y agregados y una disminución de 8,8% para la familia pintura y 5,4% para adhesivo, resaltando que la baja en el gasto de materiales para la familia pintura es debido al pronóstico de esta.

Finalmente, en la evaluación de alternativas para las propuestas de distribución de áreas se concluye que las dos alternativas con mayor eficiencia en el método de evaluación por adyacencia de departamentos son la alternativa uno y seis, con una eficiencia igual al 71% y 76% respectivamente. Por otro lado, empleando el método de evaluación por costo de manejo de material se obtuvo una distancia recorrida de 62,70 metros para la alternativa 1 y 53,24 metros para la alternativa 6. Por consiguiente, se selecciona la alternativa seis como la mejor propuesta para la distribución de planta.
Capítulo 4
Diseño de Almacén

En este capítulo se presenta el diseño de almacén para el punto de venta y bodega, para esto se realiza una descripción de los factores internos y externos influyentes para el diseño del almacén, seguido de las técnicas de almacenaje propuestas con el fin de mejorar la ubicación, identificación, y mejorar el manejo de los productos en el almacén, en donde se resalta el análisis de jerarquización ABC.
4.1 Descripción

Por medio de entrevistas realizadas al gerente de la empresa, se evidenció que los factores internos y externos influyentes para el diseño del almacén son:

a. El intervalo de tiempo para la entrega de una orden depende del tamaño de pedido, es decir si el tamaño de pedido es pequeño se realiza la entrega inmediata de los productos, por el contrario, si el tamaño de orden es grande, es necesario que se realice una orden de pedido a la planta para dar cumplimiento a la orden de pedido.

b. Actualmente el almacén del punto de venta de la empresa cuenta con una organización del inventario, en donde se priorizan los productos de la marca BioPinturas, es decir, los productos fabricados por la empresa se ubican donde se tenga mayor visualización de estos por parte de los clientes.

c. Actualmente los productos se ubican bajo un orden no establecido, es decir, caótico; de acuerdo a lo anterior puede percibirse que los productos muchas veces se colocan en cualquier espacio disponible.

d. La empresa cuenta con Sistema de alerta, es decir, en el momento en que el inventario llegue al Punto de Pedido de 20 unidades, se procede a realizar las órdenes de pedido a proveedores u órdenes de producción a la planta de BioPinturas S.A.S.

e. El punto de venta cuenta con dos auxiliares de bodega y una vendedora. En donde los auxiliares se encargan del alistamiento de pedidos, organización de materiales y productos en el almacén, y atención al cliente. Por otro lado, la vendedora se encarga del manejo de personal, atención a clientes, y manejo del software de inventario.

f. En el Plano 4 se encuentra la ubicación establecida de los estantes del punto de venta, en la Tabla 32 se presenta la capacidad medida en volumen, cantidad de galones y cuñetes que se pueden acomodar. El estante 11 y 12 tiene dos niveles que la empresa ajustó al tamaño de los tintes, por lo que esos espacios son fijos para este producto.

Tabla 32

Capacidad de los estantes

<table>
<thead>
<tr>
<th>Estante</th>
<th>Niveles</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Alto (m)</th>
<th>Galones</th>
<th>Cuñetes</th>
<th>Volumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>5</td>
<td>0,41</td>
<td>1,21</td>
<td>2,64</td>
<td>140</td>
<td>120</td>
<td>1,310</td>
</tr>
<tr>
<td>E2</td>
<td>5</td>
<td>0,41</td>
<td>1,21</td>
<td>2,64</td>
<td>140</td>
<td>120</td>
<td>1,310</td>
</tr>
<tr>
<td>E3</td>
<td>6</td>
<td>0,41</td>
<td>1,145</td>
<td>2,64</td>
<td>168</td>
<td>144</td>
<td>1,239</td>
</tr>
<tr>
<td>E4</td>
<td>6</td>
<td>0,41</td>
<td>1,145</td>
<td>2,64</td>
<td>144</td>
<td>120</td>
<td>1,239</td>
</tr>
<tr>
<td>E5</td>
<td>6</td>
<td>0,41</td>
<td>1,145</td>
<td>2,64</td>
<td>144</td>
<td>120</td>
<td>1,239</td>
</tr>
<tr>
<td>E6</td>
<td>6</td>
<td>0,41</td>
<td>1,145</td>
<td>2,64</td>
<td>168</td>
<td>144</td>
<td>1,239</td>
</tr>
</tbody>
</table>
El almacén cuenta con dos exhibidores de malla gancho destinados para los accesorios pintura, con dos estantes de gavetas para la tornillería y dos determinados para lijas, y cuenta con nueve vitrinas (Ver Tabla 33). Cada vitrina tiene diferentes dimensiones, se utilizan para productos pequeños como bombillos, cintas, lacas, sprite, entre otros; la capacidad de estas varía con respecto al tipo de producto que se ubique allí.

Tabla 33

Capacidad de las vitrinas

<table>
<thead>
<tr>
<th>Vitrina</th>
<th>Niveles</th>
<th>Ancho (m)</th>
<th>Largo (m)</th>
<th>Alto (m)</th>
<th>Volumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>4</td>
<td>1,8</td>
<td>0,4</td>
<td>1,1</td>
<td>0,792</td>
</tr>
<tr>
<td>V2</td>
<td>4</td>
<td>1</td>
<td>0,4</td>
<td>1,1</td>
<td>0,44</td>
</tr>
<tr>
<td>V3</td>
<td>3</td>
<td>0,8</td>
<td>0,5</td>
<td>0,97</td>
<td>0,388</td>
</tr>
<tr>
<td>V4</td>
<td>3 y 4</td>
<td>1,4</td>
<td>0,4</td>
<td>1,1</td>
<td>0,616</td>
</tr>
<tr>
<td>V5</td>
<td>4</td>
<td>1,2</td>
<td>0,4</td>
<td>1,1</td>
<td>0,528</td>
</tr>
<tr>
<td>V6</td>
<td>4</td>
<td>1,2</td>
<td>0,4</td>
<td>1,1</td>
<td>0,528</td>
</tr>
<tr>
<td>V7</td>
<td>4</td>
<td>1,4</td>
<td>0,4</td>
<td>1,1</td>
<td>0,616</td>
</tr>
<tr>
<td>V8</td>
<td>3</td>
<td>0,8</td>
<td>0,5</td>
<td>0,97</td>
<td>0,388</td>
</tr>
<tr>
<td>V9</td>
<td>4</td>
<td>1,4</td>
<td>0,4</td>
<td>1,1</td>
<td>0,616</td>
</tr>
</tbody>
</table>

Tabla 34

Productos en los estantes

<table>
<thead>
<tr>
<th>Estante</th>
<th>Producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Vinilo</td>
</tr>
<tr>
<td>E2</td>
<td>Vinilo</td>
</tr>
<tr>
<td>E3</td>
<td>Vinilo</td>
</tr>
<tr>
<td>E4</td>
<td>Vinilo, estuco, acronal y thinner</td>
</tr>
<tr>
<td>E5</td>
<td>Vinilo, acronal, thinner, PVA y masilla</td>
</tr>
<tr>
<td>E6</td>
<td>PVA, masilla, esmalte y anticorrosivo</td>
</tr>
<tr>
<td>E7</td>
<td>Masilla, esmalte, anticorrosivo y barniz</td>
</tr>
</tbody>
</table>

Fuente: Autores
E8 Masilla, esmalte y anticorrosivo
E9 Masilla, esmalte, barniz, impermeabilizante, boquilla y laca
E10 Masilla, esmalte, barniz y laca
E11 Vinilo, esmalte, trafico, laca y anticorrosivo
E12 Vinilo, esmalte, tráfico y laca
E13 Esmalte, boquilla, laca, cinta, discos y venecianos

Fuente: Autores

i. El almacén tiene productos de gran dimensión como lo son laminas drywall, superboard y de techo, tejas, productos de perfiles, perimetral y cornisa, los cuales se encuentran ubicados en dos estantes, y unos productos en presentación de bultos los cuales están en la bodega del almacén, la organización actual del almacén puede verse en el Plano 4.

j. El sistema de gestión de inventarios es un Sistema Pull, es decir su periodo de reabastecimiento no es periódico, este tiene en cuenta el consumo de los productos para llevar a cabo el aprovisionamiento cuando se vea necesario.

Teniendo en cuenta lo anterior se propone unas técnicas de almacenamiento para el diseño apropiado del almacén.

4.2 Técnicas de Almacenamiento

Para una mejora en la ubicación, identificación y fácil manejo de los productos en el almacén del punto de venta, basados en la rotación de los productos, se plantea las siguientes técnicas de almacenaje:

1. Diseño de almacén mediante el análisis de ABC

Para una ubicación eficiente, se realiza un análisis de jerarquización ABC de las familias de los productos comercializados en el punto de venta, teniendo en cuenta la rotación de los productos en los últimos 6 meses, y posteriormente el análisis ABC en cada una de las familias, con el fin de priorizar los productos que las integran.

La ubicación de cada uno de los productos se realiza con base en las siete técnicas de almacenaje (Cembranos Nistal, 2014), las cuales se explican a continuación:

1. Agrupar partes similares juntas.
2. Almacenar las partes verticalmente.
3. Almacenar partes con fácil alcance.
4. Almacenar partes pesadas en la parte de abajo o a la altura de la cintura.
5. Establecer una ubicación diferente para cada número de parte.
6. Control de irregularidades – por medio visual.
7. Almacenar partes de acuerdo a su clase de movimiento.
Así mismo, la técnica de organización de los estantes anaqueles se realiza de manera que los productos de la marca BioPinturas deben ser de fácil alcance, es decir en las divisiones centrales e inferiores, debido a que la empresa quiere que se destaquen los productos propios.

2. Metodología 5s
Con el fin de mejorar la identificación de los productos en el almacén y dar apoyo a las siete técnicas de almacenaje planteadas anteriormente, se realizó una propuesta de implementación de la metodología 5s como se muestra en el Capítulo 5.

La aplicación de esta metodología en conjunto con las siete técnicas de almacenaje tiene como objetivo reducir el tiempo de almacenaje y alistamiento de los productos, hacer un uso eficiente de los espacios, mejorar la productividad del personal, y mejorar la organización y control del almacén.

3. Sistema de gestión de pedidos
El sistema de abastecimiento se realizará en el momento en que el inventario se encuentre en el punto de pedido establecido por la empresa.

4. Se recomienda utilizar el método FIFO, es decir el primer producto que entre al almacén será el primero en salir en las ventas con el fin de darle salida a aquellos productos que se adquirieron primero, lo que genera que estos productos deben ubicarse en la primera fila, por ejemplo, en los estantes.

4.3 Propuesta del Diseño de Almacén

4.3.1 Jerarquización ABC.
En el punto de venta de la empresa BioPinturas S.A.S., se comercializan 61 tipos de producto de los cuales 6 de ellos corresponden a productos que se encuentran ubicados en la bodega. Los 55 productos restantes se categorizaron por familia, para una zonificación de los productos similares, y se realizó el análisis ABC jerarquizando por índice de rotación. De forma que los productos de las familias tipo A corresponden al 15%, siendo estos los productos de mayor importancia en el almacén, los productos de la familia tipo B corresponden al 20% y el porcentaje restante corresponden a los productos de las familias tipo C.

La base de datos que se utilizó cuenta con las unidades vendidas de los últimos 6 meses, dando a conocer la rotación de cada uno de los productos. Seguido de esto se agruparon las unidades vendidas de cada uno de los productos por familias, de tal manera que se pudiera organizar de mayor a menor la cantidad de las unidades vendidas para posteriormente al total de las unidades vendidas aplicar el porcentaje establecido del ABC para clasificar las familias según el tipo. Como se puede observar en la Tabla 35, Ferretería es el producto con mayor índice de rotación ubicado en la clasificación tipo A, y Pintura y Agregados, con importancia secundaria en la clasificación tipo B.
Para realizar la ubicación de cada uno de los productos, se procede a realizar la jerarquización ABC de cada una de las familias (Ver Anexo K) con el fin de ubicar los productos de mayor índice de rotación en una ubicación de mayor alcance.

Así mismo, se tuvo en cuenta las siete técnicas de almacenaje para realizar la ubicación eficiente de los productos en las estanterías anaquel, con el fin de dar uso de estas se tuvo en cuenta lo siguiente:

1. Agrupar partes similares juntas: Se realizó la jerarquización del ABC mediante la agrupación de los productos por familias, de tal manera que los productos similares estén ubicados juntos en un espacio del almacén.

2. Almacenar las partes verticalmente: se tuvo en cuenta la organización vertical de los productos por cada uno de los niveles de la estantería.

3. Almacenar partes con fácil alcance: los productos con mayor priorización en el ABC se ubican en las divisiones centrales e inferiores de los estantes anaqueles, es decir, teniendo en cuenta el tipo de producto y la marca.

4. Almacenar partes pesadas en la parte de abajo o a la altura de la cintura: debido a que en los estantes no hay productos de gran tamaño y peso, esto no fue tomado en cuenta para realizar la ubicación de los productos.

5. Establecer una ubicación diferente para cada número de parte: se propone a la empresa que en este punto tenga en cuenta los tipos de productos para su ubicación, ya que facilita así la ubicación fija en un estante por tipo y referencia.

6. Control de irregularidades – por medio visual: se recomienda a la empresa realizar una supervisión visual del estado de los productos, así como verificar que la marca esté ubicada para la fácil visualización de los clientes.

7. Almacenar partes de acuerdo a su clase de movimiento: se realizó el análisis ABC teniendo en cuenta la rotación de los productos durante los últimos 6 meses.

Fuente: Autores
Considerando lo anterior, en el Plano 5 se muestra la propuesta para la ubicación de los productos comercializados en el punto de venta de la empresa BioPinturas S.A.S.

Teniendo en cuenta la organización propuesta para los estantes se hace la distribución de los productos para cada uno, teniendo en cuenta la cantidad y los niveles. En el estante dos el nivel uno se deja libre para que el gerente del almacén ubique allí productos de las familias abrasivo, agregados y adhesivo, teniendo en cuenta que el pronóstico para estos productos tiene un comportamiento creciente en los siguientes meses. Adicionalmente en los estantes 10 y 11 aunque no se especifica en la Tabla 36, está ubicado un nivel especial para los tintes. Por otro lado, los asteriscos que se presentan en la columna que indica la cantidad de inventario actual de cada uno de los productos en el almacén, son debido a que el día en que se realizó la toma del inventario no se registraron unidades de estos productos. En el caso de la cinta papel, transparente y malla se tomó el volumen de ocupación en el estante actual y se ubicó este mismo en el estante propuesto.

Tabla 36

Propuesta de ubicación de productos en el punto de venta BioPinturas en los estantes

<table>
<thead>
<tr>
<th>Estante</th>
<th>Tipo ABC</th>
<th>Producto</th>
<th>Cantidad</th>
<th>Nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>C5 - C6</td>
<td>Paraguas</td>
<td>22 cuñetes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anticorrosivo</td>
<td>80 galones</td>
<td>2, 3 y 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frescasa Eco</td>
<td>*</td>
<td>5</td>
</tr>
<tr>
<td>E2</td>
<td>C1 - C5</td>
<td>PVA</td>
<td>12 cuñetes</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colbón</td>
<td>5 cuñetes</td>
<td>3 y 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boquilla</td>
<td>36 cajas</td>
<td>3 y 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removedor</td>
<td>*</td>
<td>5</td>
</tr>
<tr>
<td>E3</td>
<td>B2 - C1</td>
<td>Masilla</td>
<td>110 cuñetes</td>
<td>1 a 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sellador</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>E4</td>
<td>B1 - B2</td>
<td>Laca</td>
<td>79 galones</td>
<td>1, 2 y 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fondo</td>
<td>8 cuñetes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estuco</td>
<td>12 cuñetes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masilla</td>
<td>40 cuñetes</td>
<td>5 y 6</td>
</tr>
<tr>
<td>E5</td>
<td>B1</td>
<td>Laca</td>
<td>127 galones</td>
<td>1 a 3 y 5 a 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Veneciano</td>
<td>14 cuñetes</td>
<td>4</td>
</tr>
<tr>
<td>E6</td>
<td>B1</td>
<td>Trafico</td>
<td>30 galones</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barniz</td>
<td>16 galones</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carraplast</td>
<td>12 galones</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esmalte</td>
<td>84 galones</td>
<td>3, 4 y 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thinner</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tintes</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>E7</td>
<td>B1</td>
<td>Esmalte</td>
<td>168 galones</td>
<td>1 a 6</td>
</tr>
<tr>
<td>E8</td>
<td>B1</td>
<td>Esmalte</td>
<td>168 galones</td>
<td>1 a 6</td>
</tr>
<tr>
<td>E9</td>
<td>B1</td>
<td>Vinilo</td>
<td>140 cuñetes</td>
<td>1 a 5</td>
</tr>
<tr>
<td>E10</td>
<td>A - B1</td>
<td>Cinta papel, transparente y malla</td>
<td>*</td>
<td>1,2 y 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinilo</td>
<td>48 cuñetes</td>
<td>4 y 5</td>
</tr>
<tr>
<td>E11</td>
<td>B1</td>
<td>Vinilo</td>
<td>112 cuñetes</td>
<td>1 a 4</td>
</tr>
</tbody>
</table>
Adicionalmente, se realiza una reorganización de los productos en las vitrinas teniendo en cuenta el ABC generado.

Tabla 37

Propuesta de ubicación de productos en el punto de venta BioPinturas en las vitrinas

<table>
<thead>
<tr>
<th>Vitrina</th>
<th>Producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Chapas, Conector Y en cobre, Destapa canecas, Estopa, Metro, Extensiones</td>
</tr>
<tr>
<td>V2</td>
<td>Paneles de luz</td>
</tr>
<tr>
<td>V3</td>
<td>Cinta 3M Fluorescente, enmascarada y metálica</td>
</tr>
<tr>
<td>V4</td>
<td>Sprite</td>
</tr>
<tr>
<td>V5</td>
<td>Sprite</td>
</tr>
<tr>
<td>V6</td>
<td>Sprite, Veneciano 1/32</td>
</tr>
<tr>
<td>V7</td>
<td>Bombillería eléctrico, Llana</td>
</tr>
<tr>
<td>V8</td>
<td>Pegante, Silicona</td>
</tr>
<tr>
<td>V9</td>
<td>Espátula, Discos, Herramientas</td>
</tr>
</tbody>
</table>

Fuente: Autores

Teniendo en cuenta que los cuñetes de los productos de la familia pintura son de gran tamaño y peso y no pueden ser ubicados en las estanterías, se determinó dos áreas para su ubicación como se muestra en el Plano 5. Así mismo se muestra la ubicación propuesta de un área de recepción de materiales o productos.

4.3.2 Diseño Bodega.

Los productos que se encuentran en la bodega no cuentan con un espacio o mecanismo de almacenamiento establecido, por lo que algunos de ellos se encuentran de manera desordenada en el piso.
Por lo anterior se le propone a la empresa implementar estantes Cantilever y estantería vertical, con el fin de lograr un almacenaje apropiado para los productos cuyas características son de gran longitud. Para los productos pesados se recomienda el uso ISO Pallets.

Considerando el inventario existente para los productos en bodega, es necesario dar uso de 21 ISO Pallets, en donde se destinaron las láminas drywall y superboard, así como los productos que se venden por bulto, como lo son el estuco, adhesivo para baldosas, porcelanato, yeso y graniplas. Para los productos de las familias perfiles, perimetral y cornisa, se utilizaron 3 estantes Cantilever sencillos de 50cm de ancho y 3m de longitud, con 4 niveles. Así mismo, para la organización adecuada de las láminas techo que tienen un largo de 5,95m, se dio uso de dos estantes Cantilever dobles de 1,10m de ancho, 6m de longitud y 4 niveles. Por último, aunque no se registran existencias de tejas onduladas de fibrocemento ni translúcidas, se decidió destinar un espacio para su ubicación, dando uso de una estantería vertical para las tejas translúcidas, y por otro lado para las tejas onduladas de fibrocemento que tienen un peso máximo de 3kg por unidad, se destinaron tres ISO pallets.

Teniendo en cuenta los productos que se encuentran en la bodega se realizó una clasificación por familia, para lograr llevar a cabo una zonificación de los productos similares y posteriormente realizar un análisis ABC jerarquizando por índice de rotación, de forma que los productos de las familias tipo A corresponden al 15%, siendo estos los productos de mayor importancia en la bodega, los productos de la familia tipo B corresponden al 20% y el porcentaje restante corresponden a los productos de las familias tipo C.

Se utilizó la misma base de datos descrita para la organización del almacén, la cual cuenta con las unidades vendidas de los últimos seis meses, dando a conocer la rotación de cada uno de los productos, seguido de esto se agruparon las unidades vendidas por familia y se procedió a organizar de mayor a menor la cantidad de unidades vendidas para finalmente aplicar el porcentaje establecido para el ABC al total de las unidades vendidas y así obtener la clasificación para cada familia.
Tabla 38
Jerarquización por familias ABC bodega

<table>
<thead>
<tr>
<th>Bodega</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfilería</td>
<td>17073</td>
<td>A</td>
</tr>
<tr>
<td>Techo</td>
<td>5273</td>
<td>B</td>
</tr>
<tr>
<td>Lamina</td>
<td>2613</td>
<td>B</td>
</tr>
<tr>
<td>Cornisa</td>
<td>971</td>
<td>C</td>
</tr>
<tr>
<td>Perimetral</td>
<td>962</td>
<td>C</td>
</tr>
<tr>
<td>Tejas</td>
<td>890</td>
<td>C</td>
</tr>
</tbody>
</table>

Fuente: Autores

Para los seis productos que se encontraban en el análisis de familias del almacén, pero debido a su peso y tamaño pertenecen a la bodega, se realiza la ubicación teniendo en cuenta la posición que su respectiva familia ocupa en el análisis de ABC realizado en almacén.

Tabla 39
Jerarquización por familias ABC

<table>
<thead>
<tr>
<th>Familia</th>
<th>Producto</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferretería</td>
<td>Yeso</td>
<td>3231</td>
<td>A</td>
</tr>
<tr>
<td>Pintura</td>
<td>Graniplas</td>
<td>6514</td>
<td>B</td>
</tr>
<tr>
<td>Agregados</td>
<td>Pasta</td>
<td>1899</td>
<td>C</td>
</tr>
<tr>
<td>Agregados</td>
<td>Estuco</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>Adhesivos</td>
<td>Adhesivo para baldosas</td>
<td>1042</td>
<td>C</td>
</tr>
<tr>
<td>Adhesivos</td>
<td>Porcelanato BioPinturas</td>
<td>194</td>
<td>C</td>
</tr>
</tbody>
</table>

Fuente: Autores

A partir de lo anterior, en el Plano 5 se presenta la propuesta con la ubicación de los productos pertenecientes a la bodega, donde se ubicó por distancia los productos con mayor importancia teniendo en cuenta los estantes descritos anteriormente.

4.4 Conclusiones

El punto de venta del almacén cuenta con nueve vitrinas las cuales tienen una capacidad de 4,912 m³, y 13 estanterías las cuales tienen una capacidad total de 17,04 m³ equivalentes a 2148 galones o 1820 cuñetes.

Para la propuesta del diseño del almacén en el punto de venta, se realizó un análisis de jerarquización ABC donde la familia ferretería se categoriza como producto tipo A, ya que tiene nivel de rotación igual a 51613,6 unidades en la demanda del periodo de los seis meses analizados, y la familia pinturas y agregados corresponden a productos tipos B. Complementario a lo anterior, en el diseño de almacén para la bodega el producto perteneciente a tipo A es perifería con un nivel de rotación de 17073 unidades vendidas en periodo comprendido de noviembre del 2016 a abril de 2017. Mientras que los tipo B corresponden a productos de techo y lámina. Adicionalmente del análisis ABC se propone el uso de estanterías Cantilever y vertical con el fin mejorar la organización del espacio y ubicación de los productos.
Capítulo 5
Metodología 5s

En este capítulo se presenta una propuesta de implementación de la metodología 5s, con el fin de dar apoyo a diseño y distribución de planta y almacén buscando minimizar el desperdicio y mantener las áreas organizadas y limpias. Inicialmente, se realiza un diagnóstico con el fin de realizar una evaluación de los primeros tres pilares, teniendo en cuenta esto se asignaron dos tarjetas para identificar los puntos a mejorar respecto a Clasificación, Orden y Limpieza. Así mismo, con el fin de conservar los tres primeros pilares se propone un plan de estándarización de procesos y una recomendación sobre la disciplina que el personal debe tener.

Para lo anterior, se muestra un plan de implementación con un resumen de inversión en tiempo y costo.
5.1 Diagnóstico inicial

Se realizó una evaluación inicial de los tres primeros pilares, en la cual se hizo la calificación por observación y por entrevista con el personal de la empresa. Se realizó un cuestionario de auditoría 5s que fue utilizado por D. Rodríguez (Rodriguez Zurita, 2002), donde se inicia con la formulación de cinco preguntas para cada uno de los pilares Clasificación, Orden y Limpieza, se da una calificación de 0 a 4 siendo 0 muy mal y 4 muy bien como se muestra en el Anexo L, de manera que cada uno de los pilares tiene un puntaje máximo de 20, generando un total de 60 puntos.

Tabla 40
Resultados del cuestionario de auditoría 5s en la planta BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Pilar</th>
<th>Puntaje</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación</td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>Orden</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Limpieza</td>
<td>4</td>
<td>20%</td>
</tr>
</tbody>
</table>

Fuente: Autores

Como se puede observar en la Tabla 40 la calificación en la planta fue equivalente a 23%, teniendo en cuenta que la sumatoria de los puntos obtenidos en total para los pilares corresponden a 14 puntos, considerando que 60 puntos era el puntaje máximo que podía ser obtenido en la evaluación del cuestionario.

Para clasificación se obtuvo un 40% con respecto al puntaje máximo de 20 que por pilar puede lograrse, debido en gran manera a que el personal de la planta no tienen exceso de herramientas en su lugar de trabajo, este cuenta con un kit de herramientas donde se encuentra espátula, chipote y bisturí, los cuales se usan en cualquiera de las máquinas, por otro lado se evidencia la falta de letreros de señalización y de información adicional, se observa que se tienen máquinas que ya no se encuentran en uso.

El pilar de orden tuvo la calificación más baja equivalente a 10% debido a que ni las áreas ni puestos de trabajo están demarcados con líneas divisorias, no se cuenta con un lugar claramente identificado para las herramientas y aunque existe mensualmente unos pedidos que la empresa realiza de materia prima no se cuenta con un inventario que dé a conocer si lo pedido es lo necesario.

Por último, para el pilar de limpieza se obtuvo una calificación de 20% ya que, aunque a diario realizan limpieza en el interior de las máquinas, se observa que ni los pisos ni las máquinas están libres de suciedad, no se cuenta con una persona encargada para verificar la limpieza y por lo mismo tampoco se cuenta con un cronograma.

Tabla 41
Resultados del cuestionario de auditoría 5s en el punto de venta BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Pilar</th>
<th>Puntaje</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>Orden</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Limpieza</td>
<td>6</td>
<td>30%</td>
</tr>
</tbody>
</table>

Fuente: Autores
De igual manera en la Tabla 41, el puntaje total de la evaluación en el punto de venta es de 15 puntos, correspondientes al 25% respecto a los 60 puntos totales. El pilar con mayor puntaje es Clasificación con un 35% teniendo en cuenta que el puntaje máximo por pilar es de 20 puntos, esto debido a que se tiene un manejo regular de los productos, materiales y herramientas, en el almacén no se encuentra ningún tipo de señalización o letreros de información, y hay equipos sin utilizar en el almacén. El pilar de Limpieza obtuvo un puntaje del 30%, esto teniendo en cuenta que, aunque en el punto de venta del almacén se observa que en las estanterías y pisos se realiza limpieza regularmente, en la parte de preparación de productos y la bodega el piso y las estanterías nunca permanecen limpios. Por último, el pilar que obtuvo la menor calificación fue Orden con un 10%, esto teniendo en cuenta que el almacén no tiene demarcación en las áreas de trabajo ni para herramientas.

Por otro lado, en cuanto al inventario la empresa cuenta con un sistema software para tener control de las cantidades existentes, pero este no es actualizado constantemente, por lo que el sistema de control de inventario no es coherente con las unidades existentes en el almacén.

5.2 Clasificación

Debido a que los integrantes de la empresa no tienen un conocimiento específico sobre la metodología 5S, se sugiere que en primer lugar la empresa genere una capacitación del tema, explicando así las herramientas o métodos que se implementarían.

Dado que la clasificación consiste en separar los elementos que son innecesarios como se mencionó en el Capítulo 2, se propone la aplicación de la tarjeta roja, esto con el fin de identificar en cada una de las áreas los artículos, equipos, herramientas y materiales y darles el manejo que estos requieren, ya sea eliminarlos, reubicarlos y agruparlos, repararlos o según el caso, reciclarlos y la tarjeta amarilla para identificar aquellos ítems que requieren limpieza.

Por medio de una inspección visual fue posible realizar la verificación del estado de cada una de las zonas o áreas de la empresa con el fin de asignar la respectiva tarjeta. Para dar inicio a la clasificación a partir de las tarjetas rojas, se identificaron las categorías a mejorar y las acciones sugeridas para dar paso a la definición de las actividades de clasificación y orden que pueden llevarse a cabo en cada uno de los espacios de la empresa (Ver Anexo N y O), donde las acciones sugeridas para clasificar son eliminar y reparar, y las acciones sugeridas para orden son reubicar, agrupar y señalar. En cuanto a las tarjetas amarillas se definen los ítems o áreas con sus respectivas categorías para el proceso de limpieza (Ver anexo P).
5.2.1 Planta.

Teniendo en cuenta lo anterior, los resultados obtenidos una vez realizada la propuesta de actividades para la planta pueden observarse en la Tabla 42. De esta manera el porcentaje de participación es mayor para el ítem de ordenar correspondiendo al 50% es decir 19 tarjetas de un total de 38, para clasificación se hallan 12 tarjetas equivalentes a 31,58% y finalmente el 18,42% son siete tarjetas amarillas de limpieza.

Para el caso de clasificación se resalta que estas actividades pueden llevarse a cabo en un corto plazo y casi inmediatamente, además estas actividades no requieren que la empresa haga una inversión ya que la mayoría son desechar algún elemento ya sea materia prima, herramienta o equipo. En el caso del ítem de orden se evidencia la necesidad de colocar cada cosa en su lugar por lo que se encuentran varias actividades que requieren asignar, reubicar, demarcar objetos e incluso áreas, finalmente para el ítem de limpieza se identifican actividades que requieren un control para eliminar polvo o cualquier suciedad que
ayude al bienestar físico y mental de los trabajadores y aporte a la eficiencia de la empresa. De esta manera puede verse que las tarjetas rojas corresponden a 81,58% mientras que las tarjetas amarillas son iguales al 18,42% restante.

Tabla 42
Total de tarjetas propuestas para la planta BioPinturas S.A.S.

<table>
<thead>
<tr>
<th># Tarjetas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificar</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Limpieza</td>
</tr>
</tbody>
</table>

Fuente: Autores

Para las tarjetas rojas del ítem clasificar se propone para dar solución eliminando los objetos, es decir desechar los artículos que se encontraron innecesarios y que pertenecen a las categorías de Herramientas, Equipos, Maquinaria, Materia Prima y Otros, los cuales fueron baldes que no se utilizan y ya se encuentran deteriorados, tapas de los tanques químicos, bolsas plásticas de materia prima, bisturís que ya no se encuentran en uso o están dañados, empaques de producto terminado dañados, unas tablas las cuales no tienen uso en la empresa y un estante el cual se observa que solo contiene material para desechar y no tiene un uso útil en la planta. Por otro lado, se encuentra la pesa, la agitadora y el motor dañado, objetos a los que se les sugiere un trato especial ya que, aunque actualmente no son parte del proceso de producción y se encuentran sin uso alguno en la planta, estos pueden ser reparados y después vendidos o donados, si estos no tienen arreglo alguno entonces se sugiere que sean desechados. Finalmente, para el caso de la llanta se sugiere que esta sea reciclada y para la caja de derivación la cual se encuentra sin tapa se sugiere que la reparen prontamente.

Para llevar a cabo esta selección se le propone a la empresa realizar una inspección en la planta para seleccionar los objetos anteriormente citados.

En conclusión, una vez se dé solución a las tarjetas del ítem de clasificación queda un restante de 26 tarjetas, de las cuales 19 corresponden a orden y 7 son tarjetas amarillas de limpieza, las cuales serán abordadas en los siguientes pilares.

5.2.2 Punto de Venta.

La Tabla 43 presenta la cantidad de tarjetas rojas y amarillas propuestas para el punto de venta una vez se identificaron las actividades a mejorar, siendo estas un total de 39 tarjetas, de las cuales el 28,21% corresponde al pilar de clasificación, es decir son actividades que no requieren el uso de recursos adicionales, son fáciles de realizar y pueden desarrollarse inmediatamente, estas actividades se identificaron como la reparación de equipos y la eliminación de materiales o productos dañados. El 56,41% de las tarjetas corresponden a pilar orden, es decir que las actividades describen la necesidad de dar un orden a las cosas y colocar cada cosa en su lugar, de igual manera hace referencia a la delimitación y señalización de las áreas o herramientas en el punto de venta. Por otro lado, en el pilar de limpieza se hallan un total de 6
tarjetas correspondientes al 15,38%, donde se realiza el proceso de limpieza de los ítems o espacios del almacén con el fin de convertir el punto en lugar de trabajo limpio, para un óptimo desempeño y aumento de la productividad.

En resumen, respecto al total de tarjetas identificadas en el punto de venta, se hallaron un total de 33 tarjetas rojas y 6 tarjetas amarillas correspondientes al 84,62% y 15,38% respectivamente.

Tabla 43

Total de tarjetas propuestas para el punto de ventas BioPinturas S.A.S.

<table>
<thead>
<tr>
<th># Tarjetas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificar</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Limpieza</td>
</tr>
</tbody>
</table>

Fuente: Autores

Los ítems que se consideraron para eliminar del punto de venta, es decir que se deben desechar de forma inmediata debido a que son innecesarios corresponden a las categorías de Productos terminados, Herramientas y Otros, siendo este último específicamente la basura que se encuentra en el piso del almacén. Para esto, se propone seleccionar aquellos productos terminados que presentan averías o vencimiento en las tres áreas del almacén con el fin de desecharlos, de igual manera realizar el mismo procedimiento con las espátulas que se encuentran en el área de preparación de productos ya que estas se encuentran dañadas; por último, agrupar todos aquellos empaques de productos ya utilizados y que se encuentran dispersos por el piso de la bodega y desecharlos.

Por otro lado, en cuanto a las conexiones eléctricas de la bodega del almacén, se halla la necesidad de reparar la conexión de enchufe que se encuentra desconectada y así mismo, realizar la instalación eléctrica para iluminar la zona en donde se encuentran los bultos de producto terminado con el fin de brindar seguridad al personal. Igualmente, la toma corriente que está ubicada en la parte inferior del estante tres, no se encuentra en su lugar, por esto es necesario reparar la toma corriente de forma que quede directamente en la pared, con el fin de evitar posibles causas de accidentes. De igual manera, en el punto de venta se cuenta con un computador de mesa el cual no se le da uso debido a que se encuentra averiado, como se explicó anteriormente, en este caso se propone verificar si el equipo tiene la oportunidad de ser reparado para posterioriamente ser vendido o donado, y si no es posible repararlo proceder a desecharlo.

Finalmente, dando conclusión a las 11 tarjetas rojas del pilar de clasificación, queda un restante de 22 tarjetas Rojas correspondientes al pilar de orden y 6 tarjetas amarillas correspondientes al pilar de limpieza.

5.3 Orden

El segundo paso de la metodología 5s es el orden de todos los objetos y materiales, asignando un lugar específico a cada uno. En este ítem se le dará continuación a las tarjetas rojas que quedaron una vez se realizó la clasificación, donde para la planta y punto de venta quedaron 19 y 22 tarjetas respectivamente.
Para la señalización de áreas u objetos en la planta y el punto de venta, se tuvo en cuenta el código de colores de seguridad para establecimientos de trabajo indicado en la Resolución 02400 de 1979 (Ministerio de Trabajo y Seguridad Social, 1979) por el Ministerio de Trabajo y Seguridad Social.

Tabla 44

Código de colores para señalización 5s

<table>
<thead>
<tr>
<th>Código de colores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rojo</td>
<td>Extintores, botones de parada de máquinas</td>
</tr>
<tr>
<td>Naranja</td>
<td>Contorno de las cajas individuales de control de maquinaria</td>
</tr>
<tr>
<td></td>
<td>Precaución, áreas de trabajo y almacenamiento (5cm de ancho),</td>
</tr>
<tr>
<td>Amarillo</td>
<td>áreas libres frente extintores (semicírculo de 50cm de radio y franja de 5cm)</td>
</tr>
<tr>
<td>Verde esmeralda</td>
<td>contorno botón de arranque de máquinas</td>
</tr>
<tr>
<td>Verde pálido</td>
<td>cuerpo de la máquina, motores de las máquinas</td>
</tr>
<tr>
<td>Gris</td>
<td>Armarios de elementos de aseo, lockers.</td>
</tr>
<tr>
<td>Marfil</td>
<td>Área de operación de maquinaria</td>
</tr>
<tr>
<td>Blanco</td>
<td>Zonas de circulación, sentido de circulación, recipientes de basura (1m² por caneca)</td>
</tr>
</tbody>
</table>

Fuente: Autores. Basado en la Resolución 02400 de 1979 (Ministerio de Trabajo y Seguridad Social, 1979)

Se le propone a la empresa que para la identificación de los tomacorrientes se utilice un símbolo sobre la parte superior de la toma indicando el voltaje que este genera, tanto para la planta como para el punto de venta. Adicional para el manejo de las prendas se sugiere que los trabajadores hagan uso de los lockers colocando sus objetos personales dentro de estos.

![Símbolo de voltaje](image.png)

Con el fin de ubicar señales de salida que permitan orientar a los trabajadores sobre una ruta segura de evacuación, se plantea que para la planta y el punto de venta se instale una señalización de salida la cual basadas en la norma NTC 1700 (ICONTEC, 1989) donde se menciona que las vías de escape se localizaran y tendrán las dimensiones, color distintivo y diseño que sean claramente visibles, deberá tener la palabra ‘SALIDA’ con caracteres legibles y esta no debe ser menor de 15 cm de alto, y deberá iluminarse como lo establece la norma NTC 1461 (ICONTEC, 1987) con color de seguridad verde. Adicionalmente, se recomienda que la distancia entre las señales no sea mayor a 10 metros unidireccionales.
Figura 27. Propuesta señalización de salidas de evacuación. *Fuente: ARL Sura (ARL Sura, 2017)*

De igual forma se encuentra la tarjeta que indica la necesidad de instalar un sistema contra incendios, en este caso le sugerimos a la empresa instalar un extintor que cumpla con las especificaciones de la NTC 2885 (ICONTEC, 2009), teniendo en cuenta la clasificación de incendio que en este caso se pueden presentar incendios de tipo A que son los incendios de combustibles comunes como por ejemplo madera, papel u otros objetos que pueden estar presentes en una oficina, de tipo B dado que puede presentarse incendios de líquidos inflamables, líquidos combustibles, aceites, disolventes, alcoholes, entre otros y de tipo C que son los que involucran equipos eléctricos energizados. Adicionalmente se debe tener en cuenta el tipo de riesgo, que para la empresa es Alto ya que en este espacio la cantidad total de combustibles de clase A e inflamables de clase B están presentes en la planta y en el almacén en el punto de venta, además la empresa almacena líquidos inflamables en una cantidad mayor de 5 galones. El extintor debe ser identificado con un cuadrado rojo que contenga las letras A, B y C, se sugiere ubicar el extintor en la planta como se muestra en el Plano 6 y en el almacén como se muestra en el Plano 7, para que de esta manera sea de fácil acceso, estén libres de bloqueo por almacenamiento y/o equipos o máquinas, estén cerca de puertas de entrada y salida. El extintor debe ubicarse a una altura no mayor de 1,50 m y para la señalización del extintor se recomienda ubicar en la pared a una altura de aproximadamente 1,20 m, como
se muestra en la Figura 28 señalizar el suelo con un semicírculo amarillo de 50 cm de radio y una franja de 5 cm de ancho donde se ubica el extintor. (Ministerio de Trabajo y Seguridad Social, 1979)

5.3.1 Planta.

Con el fin de dar continuación a los ítems de las 5s se presentan las propuestas de solución para las 19 tarjetas rojas. En primer lugar, partiendo de lo propuesto en el capítulo cinco se le sugiere a la empresa dar solución a la tarjeta de asignar un lugar para los químicos ubicando estos en la zona de almacenamiento de materia prima, esto con el fin de tener un mejor control de estos productos y que sea de fácil acceso para el trabajador. De igual manera se le propone a la empresa eliminar una de las tarjetas instalando llaves de agua, la primera de estas entre las máquinas Trompo y Estuco y la otra al lado de la máquina agitadora.

Por otro lado, se requiere la demarcación de las áreas de trabajo, por lo que se realiza una propuesta que como se explicó anteriormente requiere que las áreas de trabajo y almacenamiento se señalicen con una línea amarilla de 5 cm de ancho, y para el área de contorno de las máquinas se propone una delimitación con color verde esmeralda. Todo lo anterior puede verse en el Plano 6.

La planta no cuenta con un orden establecido para las herramientas, por esto se plantea para la organización instalar un tablero de herramientas y ubicar estas como se muestra en la Figura 29.

![Figura 29. Propuesta de organización de herramientas en planta. Fuente: Autores.](image)

Por otra parte, para la clasificación y orden de empaques se asigna una tarjeta ya que muchos de los empaques se encuentran distribuidos y sin orden en el almacenamiento de la planta, lo que genera además de desorden la posibilidad de que los empaques sufran algún daño, por eso se le sugiere a la empresa hacer uso de tres pallets disponibles en la planta.
Así mismo ya que se sugiere clasificar la materia prima de forma que sea fácil su ubicación y que se mantenga un orden, se le propone a la empresa implementar unos letreros en la planta en la zona de materia prima como se indica en la Figura 30.

<table>
<thead>
<tr>
<th>NOMBRE DE MATERIA PRIMA</th>
<th>CARBONATO DE CALCIO MALLA 325</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha de último pedido</td>
<td>Fecha de último pedido</td>
</tr>
<tr>
<td>DD-MM-AAAA</td>
<td>07-08-2017</td>
</tr>
</tbody>
</table>

Figura 30. Propuesta de clasificación de materia prima en planta. _Fuente:_ Autores.

La planta cuenta con una caja de energía y un panel de control, la primera de estas hace parte de la instalación eléctrica de la planta y la otra pertenece a la máquina agitadora y de estuco, estas deben ir con un símbolo que contenga el voltaje que genera. Actualmente las cajas cuentan con esta señal de voltaje por lo que se le sugiere a la empresa ubicar un letrero en la parte superior de las cajas informando que es una caja de energía ver Figura 31.

Figura 31. Propuesta de señalización caja y panel de energía en planta. _Fuente:_ Autores.

Con el fin de dar solución a la tarjeta que indica la asignación de un espacio para la oficina se propone asignar el área indicada en el Plano 6, ya que actualmente este espacio tiene en su interior algunos materiales como envases y otros que deben ser ubicados en el área de almacenamiento de materia prima, dejando libre esta área. Igualmente, dando respuesta a la tarjeta que indica la demarcación de un lugar para la recepción y despacho de productos y señalar un área para las bicicletas, se propone a la empresa asignar los lugares como se observa en el Plano 6 adicional para la señalización del área de las bicicletas se le propone a la empresa implementar un soporte para bicicletas que sea de fácil instalación, manejo y que ocupe un espacio mínimo como el que se muestra en la Figura 32.

Figura 32. Propuesta soporte para bicicletas. _Fuente:_ Web
Finalmente se encuentra en este ítem para la acción sugerida de Reubicar cuatro actividades, de las cuales a continuación se realizarán unas sugerencias con el fin de dar solución a estas tarjetas rojas. Se encuentra la tarjeta que anuncia la actividad de ubicar todos los bultos sobre una estiba, por lo que se le sugiere a la empresa que una vez asignado el lugar para cada materia prima, se haga uso de las estibas ubicando allí la materia prima que está por kilos. La pesa que se encuentra actualmente en la planta se conecta en una toma eléctrica que está encima del estante, a su alrededor hay envases y demás materiales, mostrando que no es el sitio más favorable para tener una toma eléctrica, por lo que se le sugiere a la empresa instalar la pesa directamente a una toma corriente que se encuentre ubicada en la pared, previniendo así cualquier tipo de cortos o accidentes que puedan presentarse. Por otro lado, contando con que la planta tiene unos lockers se sugiere que estos se ubiquen dentro de la oficina como se muestra en el Plano 6, de esta manera los lockers no estarán ubicados tan cerca a la puerta y las pertenencias que allí se guarden podrán estar más seguras, además de no obstaculizar vías de acceso.

La última actividad sugiere la clasificación, identificación y orden de pallets vacíos, ya que en la planta se observó que algunos de estos estaban recostados sobre envases o sobre diferentes objetos, es por esto que la empresa podría verificar la cantidad de pallets o estibas que tiene, hacer una revisión del estado de estas viendo si no están rotas o con fisuras y posteriormente clasificarlas e identificarlas asignándoles un tipo de producto o materia prima.

5.3.2 Punto de Venta.

Con el fin de ordenar los objetos y materiales en el almacén de punto de venta, se presentan las propuestas de implementación para dar solución a las 22 tarjetas rojas correspondientes a orden. Para iniciar, en la Figura 33 se muestra una propuesta de señalización para la identificación de los productos tanto en el punto de venta como en la bodega. En cuanto a la señalización de los estantes de la bodega, además de indicar la señalización con la información del producto, se debe mostrar la capacidad de la estantería, para esto se muestra en la Figura 34 la propuesta de letrero.

![Figura 33: Propuesta y ejemplo de señalización de producto en punto de venta](Fuente: Autores)

![Figura 34: Propuesta de señalización de capacidad de estanterías](Fuente: Autores)
Adicionalmente, en el punto de venta hay un catálogo de pintura para la muestra de colores a los clientes, el cual no cuenta con un lugar específico, es por esto que se propone que la ubicación de este se encuentre en la vitrina 1 próximo a la caja y se realiza la señalización del catálogo como se muestra en la Figura 35, de igual manera se sugiere la ubicación y señalización de dos calculadoras.

Para dar solución a la señalización y clasificación de los materiales de oficina, se le propone a la empresa dar uso de uno de los cajones de cada uno de los dos escritorios que disponen, uno en el punto de venta y otro en la oficina principal, con el fin de ubicar y señalar cada uno de los útiles que se utilizan allí, tales como tijeras, esferos, cosedora, perforadora, sacaganchos, sello, lápiz, borrador, tajalápiz, regla, ganchos legajadores y calculadora. Por otro lado, se sugiere a la empresa la ubicación de un archivador en la oficina (Ver Plano 7) con el fin de asignarle un lugar adecuado a las carpetas, ya que actualmente las carpetas se encuentran encima de los escritorios, así mismo, realizar la rotulación o marcado de cada una de estas para llevar un mejor orden de los documentos.

De igual manera, para darle solución a los candados que se encuentran en uno de los estantes y las llaves de la planta a los cuales no se le ha asignado un lugar adecuado, se le propone a la empresa ubicar
un organizador de llaves y candados, para tener un fácil acceso a estos elementos, así mismo se recomienda rotular cada uno de los candados con el fin de reconocer en qué lugar va cada uno.

En la zona de preparación de productos, el personal hace uso de varias herramientas para llevar a cabo dicho proceso, estas herramientas se encuentran actualmente dispersas por toda el área, es por esto que se propone agrupar y asignar un lugar a estas. Teniendo en cuenta esto, se sugiere a la empresa instalar una bandeja para las herramientas próxima a la mesa de preparación, y en esta señalizar estas como se puede observar en la Figura 38.

Figura 38. Propuesta de señalización de herramientas zona de preparación de productos. *Fuente:* Autores.

En el Plano 6 se presenta la delimitación en el piso del área de recepción de pedidos, la máquina agitadora, la escalera, estantes, pallets, la carretilla y extintores que se encuentran ubicados en el almacén de punto de venta de la empresa BioPinturas S.A.S. Se tomó en cuenta el código de colores regido por la Resolución 02400 de 1979 (Ministerio de Trabajo y Seguridad Social, 1979), el cual se encuentra resumido en la Tabla 44.

Para dar solución a las últimas cuatro tarjetas rojas con acción sugerida ‘Reubicar’ se describen las propuestas para cada una de estas. Iniciando en el área del punto de venta, en los estantes 11 y 13 se encuentran dos bolsas amarradas con objetos desconocidos, se le recomienda a la empresa verificar y clasificar el contenido, y debido el caso, asignar un lugar adecuado para los objetos en ellas o desecharlos.
Así mismo, al no contar con un área de recepción de materiales, en el punto de venta se encuentra un lote de bultos de materia prima, la cual debe ser ubicada en el área propuesta para recepción de materia prima asignada en el Capítulo 5, o enviarla directamente a la planta, esta última actividad se sugiere también para los empaques de producto terminado marca BioPinturas S.A.S. que se encuentran en el cuarto de bodega de bultos. Para finalizar, en la malla en la que se ubican los rodillos, la empresa ubica las facturas pendientes para entrega de pedidos, por lo que se sugiere ubicar en la oficina principal un tablero de corcho, esto con el fin de ubicar las facturas pendientes y tenerlas en un solo lugar organizado.

5.4 Limpieza

Finalmente, para las tarjetas amarillas las cuales se asignaron con el fin de mantener limpios los lugares de trabajo, las herramientas y los equipos en la empresa se realizan las siguientes propuestas que buscan eliminar las 13 tarjetas amarillas que fueron identificadas en la empresa.

Para la limpieza se debe tener en cuenta aquellos lugares, espacios o equipos que requieran diariamente aseo, como es el caso específico de los suelos, pasillos, máquinas y herramientas, con el fin de que cada que se necesite alguno de estos se pueda disponer sin ningún problema. Además, se debe eliminar la suciedad del suelo, esquinas o alrededor de columnas, suciedad de las paredes, ventanas y puertas. Adicional, se debe tener en cuenta que hay que realizar limpieza con mantenimiento para prevenir los daños en las máquinas, aunque esta no se realice diariamente.

La principal fuente de basura que se observa en la planta y el punto de venta es debido al manejo de bultos que generan polvo y debido al constante paso del personal se dispersa por todo el lugar, desde el piso hasta las superficies de las estanterías y máquinas, así mismo, otra fuente de basura es de empaques ya utilizados ya que, al no disponer de un recipiente para destinar la basura, el personal disponía de estos empaques y los tiraban al suelo.

Inicialmente se le propone a la empresa realizar un proceso de limpieza general en la planta y en el almacén de punto de venta, en donde se realicen las tareas requeridas en cada área de trabajo, entre estas se deben limpiar pisos, paredes, techos y superficies, y así mismo se debe desmontar, limpiar e inspeccionar visualmente la maquinaria. La empresa debe contar con los implementos de limpieza apropiados y recipientes de basura en la planta y en el punto de venta, es por esto que se sugiere que se asigne un lugar adecuado para cada uno de estos, entre estos implementos se deben encontrar utensilios y herramientas de limpieza, como productos necesarios se encuentran detergentes, escobas, traperos, cepillos entre otros. Por otra parte, se recomienda la adquisición de las canecas de basura para el reciclaje con su respectivo color, correspondientes a los colores verde, gris y azul, y en la planta un recipiente rojo para el desecho de empaques de materiales químicos.

Teniendo en cuenta que la planta se trasladó de lugar hace poco tiempo se recomienda hacer limpieza de las paredes y techo eliminando en especial las telarañas que se encuentran allí. Por otro lado,
se cuenta con unas escaleras las cuales se utilizan para acceder a las máquinas, se sugiere que estas escaleras se limpien frecuentemente ya que sobre estas quedan partes de materia prima y puede dificultar el uso correcto de las escaleras y generar un riesgo para el operador. De igual manera, se observó que se producían riegos de agua debido a que su recolección para producción se realiza con una manguera que se desplaza por la planta desde el baño hasta las máquinas, para prevenir esta fuente de suciedad, se sugirió en el pilar orden la instalación de dos llaves de agua próximas a la maquinaria. Por último, se propone a la empresa la instalación de un extractor para de expulsar el polvo generado por el manejo de bultos de productos de materia prima, con el fin de disminuir la suciedad en superficies y pisos, y de igual manera brindar un ambiente más seguro al personal previniendo enfermedades respiratorias.

Finalmente, para generar un espacio visualmente limpio, se sugiere a la empresa el arreglo de las paredes del punto de venta ya que actualmente se encuentra con agujeros, de manera que se vean limpias y sin ninguna fisura, y posteriormente realizar el proceso de pintura.

5.5 Pilares de Soporte

Para lograr que se conserve la implementación de los primeros ítems de las 5s es necesario que se complemente con la estandarización y la disciplina. La primera de estas supone seguir un método para aplicar un procedimiento o una tarea de manera que la organización y el orden sean factores fundamentales, y la disciplina a seguir los procesos estandarizados con el apoyo del personal.

5.5.1 Estandarización.

A diferencia de los tres primeros pilares que pueden ser tomados como actividades, la estandarización no es una actividad, es un estado; su objetivo es que la clasificación, orden y limpieza se mantengan. La estandarización está relacionada fuertemente con la limpieza, debido a que su resultado es cuando se mantienen las máquinas y sus alrededores libres de escombros, aceite y suciedad. De igual manera, se refiere a idear maneras de prevenir la acumulación de suciedad y mugre, creando un vínculo aún más fuerte con las 5s en el espacio de trabajo. (Hirano, 1990)

Por lo anterior se propone llevar a cabo unas tareas de limpieza diarias, semanales y esporádicas que cualquier trabajador de la empresa podrá incluir, en sus tareas diarias se encuentra:

1. Limpiar su propio espacio de trabajo, esto incluye: sacudir o liberar de suciedad su puesto de trabajo limpiando la superficie, arrojar la basura en su respectiva caneca, si su área de trabajo es sobre un escritorio debe guardar adecuadamente los elementos que utilizo sobre su jornada, por ejemplo, si hizo uso de lápices debe guardarlos en su respectivo lugar.
2. Barrer y trapear su área de trabajo.
3. Limpiar las herramientas antes de guardarlas en su respectivo lugar.
4. Inspeccionar el estado de la máquina utilizada y limpiar.
5. Apagar y si es posible desenchufar las herramientas eléctricas o máquinas.
6. Inspeccionar que visualmente todo se encuentre en su respectivo lugar.

Para las tareas semanales se sugiere ser más organizados y mantener una planificación, puede ser asignando semanalmente un responsable y llevando un control en algún medio ya sea físico o electrónico donde se encuentre la última persona que realizó la limpieza semanal, entre estas tareas se incluye la limpieza de baños, lockers, estantes y productos que allí reposan, limpieza de la parte exterior de la máquina.

Las tareas esporádicas de limpieza requieren más atención que las anteriores ya que son de mayor planificación al necesitar muchas veces que estas se realicen a un tiempo determinado, entre estas tareas se incluye, el mantenimiento de las máquinas, equipos y herramientas, y la limpieza general del área que incluye fachadas.

Lo anterior busca que la programación de estas actividades reduzca el tiempo que se invierte en las tareas de limpieza, ya que en lugar de dedicar tiempo a tareas como recoger desechos o basura del suelo en lapsos de tiempo largos se reducirá a unos cuantos minutos durante el día. Adicional se plantea hacer uso de lista de chequeo implementada en la clasificación (Ver Anexo M) con el fin de verificar cómo va el rendimiento de los primeros ítems o si estos ya se encuentran con un cumplimiento del 100%.

5.5.2 Disciplina.

Las cuatro primeras S pueden ser implementadas totalmente sin dificultad, si el personal mantiene la disciplina en el espacio de trabajo, con el fin de aumentar la productividad y la calidad de los procesos. El objetivo del pilar de disciplina, es seguir los procedimientos especificados y estandarizados (Hirano, 1990). El personal debe seguir las condiciones de 5s establecidas para no perder el trabajo hecho, ya que sin disciplina y voluntad de estos las 5s no durarán.

El gerente es quien cumple uno de los roles principales, este debe motivar al personal para dar apoyo a la metodología, así ambas partes corregirán malos hábitos y se brindará mejoramiento continuo a los procesos. Por otro lado, se debe realizar un seguimiento periódico de la implementación, con el fin de verificar si se están siguiendo los procedimientos estandarizados en cada una de las actividades, entre estos se incluye además del plan de limpieza establecido en el pilar estandarización, ubicar los elementos en el lugar asignado, no permitir la acumulación de objetos o basura que generen desorganización y acumulación en los espacios de trabajo.

5.6 Plan de Implementación

En la Figura 39 se encuentra la secuencia de actividades a llevar a cabo durante la implementación de la metodología 5s, se propone una fecha de inicio a partir del 2 de octubre al 7 de noviembre del presente año, en el Anexo Q se presentan las tareas con las actividades necesarias para llevar a cabo cada uno de los pilares explicados anteriormente, de igual manera los costos de implementación de cada una de ellas.

El tiempo promedio para llevar a cabo la implementación de la metodología 5s para los diferentes pilares es de 27 días, para llevar a cabo la finalización de cada pilar, los tiempos se muestran en la Tabla 45, donde se tiene en cuenta que para realizar la actividad de delimitación de áreas y objetos del pilar orden, se requiere realizar previamente las actividades de limpieza general, adquisición y ubicación de canecas, y la reubicación de utensilios y productos de aseo. Dado lo anterior, el tiempo real en el que se lleva a cabo los pilares de orden y limpieza son de 10 y 12 días. Por otro lado, el costo total de la propuesta para llevar a cabo es igual a $ 2.328.108, en donde el pilar clasificación necesita un 16,02% de los recursos para su implementación, el pilar orden un 54,38% y limpieza un 29,6%, siendo orden el pilar de mayor inversión.

<table>
<thead>
<tr>
<th>Resumen de inversión para implementación de metodología 5s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar</td>
</tr>
<tr>
<td>Clasificación</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Limpieza</td>
</tr>
</tbody>
</table>

Fuente: Autores

5.7 Conclusiones

Una vez se realiza el diagnóstico inicial se concluye que en la planta se cumple con el 23% en el cuestionario de auditoría del estado actual, por otro lado, en el almacén se cumple con el 25%. A partir de esto, se realizó la asignación de tarjetas rojas y amarillas de las cuales se encontraron un total de 76 para la planta y almacén, en donde el 29% corresponden al pilar de clasificación, el 54% a orden y el 17% restante a limpieza.
Proponiendo una fecha de inicio para la implementación del 12 de octubre y una fecha de finalización del 7 de noviembre de 2017, concluyendo un tiempo total de 27 días. Para llevar a cabo cada uno de los pilares se presenta un tiempo real de 6, 10 y 12 días para los pilares de clasificación, orden y limpieza respectivamente. Así mismo, el costo estimado para la implementación de la metodología 5s es de $2.328.108.
Capítulo 6
Indicadores de Comparación

En el siguiente capítulo se presenta un contraste de la situación de la empresa con respecto a las propuestas, de forma que se establecen indicadores de medición. Para el diseño y distribución de planta se realiza por los métodos de evaluación por adyacencia de departamentos y por costo de manejo de materiales, así como por el gasto de transporte del flujo de material. Para el diseño de almacén se realizó mediante indicadores de distancia recorrida para la ubicación y recolección de pedidos. Finalmente, se realizó nuevamente la evaluación del cuestionario de auditoria asumiendo la calificación de la propuesta ya implementada.
6.1 Indicadores Diseño y Distribución en Planta

Para contrastar la propuesta frente a la situación actual de la empresa BioPinturas S.A.S., se establecieron indicadores de evaluación de la planta actual y la propuesta.

El primero de estos evalúa factores de espacio, por medio del método de evaluación por adyacencia de departamentos explicado anteriormente, en este puede verse como con la propuesta se obtienen un aumento en la eficiencia de la alternativa igual a 24% con respecto al estado actual de la empresa, debido a que la propuesta tiene un puntaje de 160 de las relaciones cumplidas, lo que quiere decir que con la implementación de esta alternativa es posible lograr una disminución del tránsito de materias y reducción de espacios ya que se tiene en cuenta la importancia en el orden de proximidad de las áreas.

Tabla 46
Evaluación por adyacencia de departamentos Propuesta Vs Actual

<table>
<thead>
<tr>
<th>Tipo de relación</th>
<th>Numero de relaciones cumplidas</th>
<th>Calificación por relación cumplida</th>
<th>Total</th>
<th>Eficiencia de la alternativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propuesta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td>160</td>
<td>76%</td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>10</td>
<td>60</td>
<td>52%</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores

Seguido se realiza la comparación del indicador que mide el costo de manejo del flujo de material de un área a otra, teniendo en cuenta que para la planta actual se tiene una matriz de distancia desde-hasta (Ver Tabla 47) donde la distancia total es igual a 89,11 metros, al realizar la comparación con la propuesta (Ver Tabla 23) se puede observar que la distancia de la propuesta se reduce 35,86 metros es decir 40,3%, de igual forma la propuesta genera una reducción de costos de $ 13,548,946.750,58.

Tabla 47
Matriz distancia desde-hasta de la propuesta

<table>
<thead>
<tr>
<th>Almacén MP</th>
<th>Agitadora</th>
<th>Estuco</th>
<th>Pegaenchape</th>
<th>Trompo</th>
<th>Empaque</th>
<th>Almacén PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén MP</td>
<td></td>
<td>10,8548</td>
<td>7,7191</td>
<td>4,6687</td>
<td>5,484</td>
<td>0</td>
</tr>
<tr>
<td>Agitadora</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,9299</td>
</tr>
<tr>
<td>Estuco</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>6,6719</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>11,5605</td>
</tr>
<tr>
<td>Trompo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15,4328</td>
</tr>
</tbody>
</table>
Finalmente se realiza la medición del último indicador el cual fue obtenido mediante la comparación de la matriz de gasto de transporte de la propuesta y el estado actual, para esto se tuvo en cuenta las distancias actuales de las máquinas y las áreas de la plata BioPinturas S.A.S y se realizó el cálculo de la matriz (Ver Tabla 49).

Tabla 49

| Matriz de gastos de transporte Q_{ij} del estado actual de la planta |
|--------------------------|---|---|---|---|
| | A1 | A2 | A3 | A4 |
| Alm. MP | 10,8548 | 7,7191 | 4,6687 | 5,484 |
| Alm. PT | 21,2755 | 17,7442 | 12,1816 | 7,6733 |
| Empaque | 4,9299 | 6,6719 | 11,5605 | 15,4328 |
| Agitadora | 443815860,1 | 443815860,1 | 443815860,1 | 16447904540 | 14262111429 | 12609163639 | 12688739823 |
| Estuco | 99920859,91 | 99920859,91 | 99920859,91 | 3703087052 | 3210976817 | 2838831567 | 2856747377 |
| Pegaenchape | 42691792 | 42691792 | 42691792 | 1582166350 | 1371909274 | 1212907964 | 1220562602 |
| Trompo | 40832924,56 | 40832924,56 | 40832924,56 | 1513276351 | 1312174197 | 1160096053 | 1167417397 |

Tabla 48

Resultados evaluación por costo de manejo de material

<table>
<thead>
<tr>
<th>Distancia total</th>
<th>Flujo de material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>89,11</td>
</tr>
<tr>
<td>Propuesta 1</td>
<td>53,24</td>
</tr>
</tbody>
</table>

Dado lo anterior puede establecerse que en la planta actual se genera un total de $79.158.072.433,37 de gastos de transporte mientras que teniendo en cuenta la propuesta escogida y desarrollada en el ítem 3.10 se genera un total de $31.143.467.601, es decir una reducción de $48.014.604.831,63 debido a que en la propuesta existe una reducción entre las distancias de las áreas.

6.2 Indicadores Diseño de Almacén

El método de comparación entre el almacén actual y el propuesto se realizó mediante indicadores de distancia, es decir, de los datos que la empresa BioPinturas S.A.S proporcionó, se seleccionaron aleatoriamente 20 facturas en las que se encontraban detallados los productos adquiridos por cliente, por lo
que se procedió a realizar la medición de la distancia recorrida para cada uno de los pedidos, tomando dos puntos de referencia para la entrega de pedidos, uno en el punto de venta y otro en la bodega (Ver Plano 4 y 5).

En la Tabla 50, se presentan las distancias recorridas tanto en el punto de venta como en la bodega para cada uno de los pedidos seleccionados aleatoriamente.

Tabla 50

Distancia recorrida para recolección de pedidos en el almacén

<table>
<thead>
<tr>
<th>No. Pedido</th>
<th>Distancia Actual (m)</th>
<th>Distancia Propuesta (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Punto de Venta</td>
<td>Bodega</td>
</tr>
<tr>
<td>1</td>
<td>14,127</td>
<td>10,54</td>
</tr>
<tr>
<td>2</td>
<td>22,698</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>19,226</td>
<td>42,16</td>
</tr>
<tr>
<td>4</td>
<td>11,528</td>
<td>31,62</td>
</tr>
<tr>
<td>5</td>
<td>4,228</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>31,988</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>11,816</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>28,223</td>
<td>47,898</td>
</tr>
<tr>
<td>9</td>
<td>4,784</td>
<td>54,676</td>
</tr>
<tr>
<td>10</td>
<td>4,784</td>
<td>81,904</td>
</tr>
<tr>
<td>11</td>
<td>27,262</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>23,528</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>92,434</td>
<td>185,945</td>
</tr>
<tr>
<td>14</td>
<td>59,383</td>
<td>236,622</td>
</tr>
<tr>
<td>15</td>
<td>27,262</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>12,656</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>32,451</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>57,772</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>36,445</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>4,784</td>
<td>243,062</td>
</tr>
</tbody>
</table>

Fuente: Autores

La distancia recorrida para los 20 pedidos en el punto de venta, es de 527,379 metros para el diseño actual y de 447,258 metros para el diseño propuesto, por lo que se obtiene una mejora del 10,07% en la propuesta con respecto al diseño actual.

Por otro lado, en cuanto al diseño de la bodega se obtuvo una distancia recorrida de 934,427 metros y 969,999 metros para el diseño actual y la propuesta respectivamente. Concluyendo que con el diseño propuesto no se disminuye la distancia recorrida para la búsqueda y recolección de pedidos aumentando la distancia en un 3,81%. Esto se atribuye a que el diseño de almacén se realizó específicamente en la organización de los productos y materiales en las estanterías y pallets adecuadas, ya que actualmente los productos en la bodega no se encuentran agrupados por tipo de producto y se encuentran dispersos por la
bodega, no se cuenta con estanterías o elementos para ubicar correctamente los productos y están directamente en el piso, ocasionando daños y suciedad en los productos, y por lo tanto obteniendo pérdidas en materiales y presentando entregas defectuosas a los clientes.

6.3 Indicadores Diseño Metodología 5s

Para realizar la comparación entre cómo se encuentra actualmente la empresa BioPinturas S.A.S. y cuál sería el resultado una vez se desarrolle la propuesta de implementación de la metodología 5s, se realizó nuevamente el cuestionario de auditoría asumiendo la calificación que obtendría la empresa como se presenta en el Anexo R.

Una vez se califican cada uno de los pilares clasificación, orden y limpieza, se obtienen los resultados registrados en la Tabla 51, en donde la sumatoria del puntaje total es de 56 equivalente al 93,3% con respecto a los 60 puntos, este último siendo el puntaje máximo que se podía obtener en el cuestionario. Considerando esto, se presenta una mejora en los resultados del cuestionario teniendo en cuenta que en el diagnóstico inicial se obtuvo una calificación de 14 y 15 puntos para la planta y el punto de venta respectivamente.

Tabla 51

Resultados del cuestionario de auditoría 5s en BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Pilar</th>
<th>Puntaje</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación</td>
<td>18</td>
<td>90%</td>
</tr>
<tr>
<td>Orden</td>
<td>19</td>
<td>95%</td>
</tr>
<tr>
<td>Limpieza</td>
<td>19</td>
<td>95%</td>
</tr>
</tbody>
</table>

Fuente: Autores

En la Tabla 51, se presenta el puntaje que se asume que obtendría la empresa una vez implemente la metodología 5s, el motivo por el que no se da un cumplimiento del 100% en cada uno de los pilares teniendo en cuenta que el puntaje máximo es de 20, es debido a que se consideran factores que dependerían de la empresa para sostener los procesos de estandarización y disciplina, o factores que son imposibles de mejorar totalmente debido los procesos y materiales que se utilizan.

Como es el caso de los productos en exceso de inventario del pilar de clasificación, ya que el gerente considera que el costo de pedido de lotes de gran tamaño de los materiales en la planta y en el punto de venta son menores, y las cantidades en inventario duran aproximadamente mes y medio. Así mismo, la utilización adecuada del software para el control de inventario depende de la disciplina que el personal tenga en cuanto a control de inventario de materias primas, productos terminados y productos no fabricados por la empresa. Por último, al ser una empresa que maneja materiales en polvo en la planta y el punto de venta, no se puede garantizar una limpieza total y permanente de los pisos.
6.4 Conclusiones

En la evaluación de indicadores para el diseño y distribución de planta, puede verse que se tiene una eficiencia en la propuesta de 76% y en el estado actual de 52%; mientras que la distancia entre áreas es de 89,11 metros en el estado actual y en la propuesta es de 53,24 metros. De esta manera, se obtiene un gasto de transporte igual a $79,158,072,433,37 para estado actual y de $31,143,467,601 en la propuesta, por lo que se concluye que se debe seleccionar la propuesta como la nueva distribución de la planta.

En el diseño de almacén se evaluó la distancia recorrida de 20 pedidos aleatorios, reduciendo en el punto de venta la distancia en 10,07% de la propuesta respecto al estado actual.

Suponiendo que la empresa realiza la implementación de las acciones 5S propuestas, se aumenta a una calificación 56 puntos en el cuestionario de auditoria, teniendo en cuenta que la calificación para la planta y el punto de venta es de 14 y 15 puntos respectivamente.
Conclusiones y recomendaciones

Conclusiones

Para el diseño y distribución en planta en el programa de producción se generó una proyección de la demanda de las familias adhesivo, pintura, agregados y abrasivo, donde se presenta una disminución del 9% para el primer año y 6% para el segundo año respecto al último año de la demanda histórica, esto debido a que la familia pintura es la que tiene mayor participación en las ventas, y disminuye en 14% y 9% para el primer y segundo año, respectivamente.

Teniendo en cuenta que el tiempo disponible para el primer y segundo año es de 1968,5 y 1929,75 horas, y el tiempo norma es igual a 1626,8 horas para el primer año y 1710,9 horas para el segundo año, por lo cual la demanda pronosticada es cubierta en el tiempo disponible. De acuerdo a los cálculos de maquinaria y mano de obra se determina que no es necesario adquirir recursos adicionales a los que ya tiene la empresa por lo que no se incide en costos adicionales.

Se concluye que la localización de la planta debe estar ubicada en el municipio de Funza, Cundinamarca, ya que los resultados de la evaluación bajo el análisis jerárquico de procesos AHP son más favorables con un peso sobre la decisión de 46,58%, confirmando que la empresa se encuentra ubicada en un lugar conveniente teniendo en cuenta los criterios de servicios públicos, arriendo, distancia al punto de venta y competencia en el sector.

Aplicando los métodos de evaluación por adyacencia de departamentos y costo por manejo de material, se determina que es conveniente realizar el diseño y distribución en planta bajo la propuesta seleccionada en el Capítulo 3, debido a que genera un aumento en la eficiencia del 24% respecto a la ubicación de las áreas en la distribución actual, así mismo la distancia total en el flujo de material se reduce a un 40,3% y el costo de manejo de material en 57,3%. En cuanto a la comparación de matrices de gastos de transporte, se obtuvo como resultado que la propuesta genera una reducción de $48,014,604,831,63 respecto a la distribución actual de la planta. Por lo tanto, se comprueba que la propuesta seleccionada genera mejores beneficios a la empresa en cuanto a disminución en la congestión, en el flujo de material y distancia.

Por otro lado, en cuanto al diseño de almacén, con el análisis jerárquico ABC se puede mejorar el flujo de materiales, ya que con el diseño propuesto de la ubicación zonificada de cada uno de los productos se pueden facilitar las operaciones del abastecimiento, ya que se podrá tener un mejor control del inventario debido a que será más fácil visualizar las cantidades existentes.
A partir de una muestra aleatoria de pedidos, se concluye que se reduce la distancia recorrida en el punto de venta del almacén en 10,07%. Por lo contrario, en la bodega, se tuvo un aumento de la distancia recorrida en los pedidos de 3,81%, debido a que se enfatizó en la adecuada organización y ubicación de los productos, haciendo posible el aprovechamiento del espacio, la recolección de pedidos y el desplazamiento tanto de los operarios como de los materiales.

Finalmente, asumiendo la implementación de la metodología 5s, el cuestionario de auditoría tendría un cumplimiento del 93,3%, registrando una mejora en comparación con la calificación realizada en el diagnóstico inicial, en donde para la planta se tuvo un cumplimiento del 23% y para el almacén del 25%.

Identificando las alternativas de solución a las tarjetas rojas y amarillas, se resolverían un total de 22 tarjetas para clasificación, 41 para orden y 13 para limpieza a un costo de $372,900 para el pilar de clasificación, $1,266,000 para orden y $689,208 para limpieza, siendo orden el pilar que incurre en un mayor costo.

En cuanto al aporte como ingenieras industriales este proyecto le brinda a la empresa BioPinturas S.A.S. la oportunidad de mejorar la organización de sus espacios y de esta manera aumentar la productividad de sus trabajadores. Adicionalmente, se realiza un re-diseño y distribución en la empresa, el cual toma en cuenta desde aspectos globales como la ubicación de áreas en la planta y en el almacén, tanto aspectos más detallados como la ubicación específica de herramientas.

Recomendaciones

Se recomienda a la empresa que se implementen las propuestas anteriormente descritas, ya que estas le aportarían a la empresa una mejora en la organización de espacios, desplazamiento de operarios y materiales, además de aportarle un aumento en la productividad ya que el trabajador podría desempeñar sus actividades de manera fácil y eficiente.

Además, se debe tener en cuenta la Resolución 02400 de 1979, ya que esta establece las algunas disposiciones sobre la higiene y seguridad en los establecimientos de trabajo, al igual que la Norma Técnica de Higiene y Seguridad NTC 1700 y la NTC 1461 que dan una orientación sobre los medios de evacuación.

Adicionalmente, para conservar la implementación de la metodología 5s, se le recomienda a la empresa mantener la disciplina en los procesos de los pilares de orden y limpieza, con el fin de generar un ambiente con mejores condiciones, más agradable y seguro de trabajar, ya que al estar ordenado y limpio se reducen los riesgos de accidentes y los defectos en los materiales.

Finalmente, a partir del análisis ABC se recomienda a la organización prestar atención a los productos pertenecientes a tipo A y B, ya que estos son los de mayor rotación en el inventario.
Bibliografía

Hidalgo Castro, D. S. (2005). Implementación de una metodología con la técnica 5s para mejorar el área de matricería de una empresa extrusora de aluminio. Guayaquil; Ecuador.

ICONTEC. (16 de 12 de 2009). *Norma Técnica colombiana NTC 2885. Extintores portátiles contra incendios*.

Real Academia Española. (13 de 09 de 2016). Obtenido de http://dle.rae.es/?id=M2v6jgO

Anexo A. Estado del Arte.

Estado del Arte: Diseño y Distribución de Planta

<table>
<thead>
<tr>
<th>Título</th>
<th>Autor</th>
<th>Año</th>
<th>Descripción</th>
<th>Impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propuesta de mejoramiento para la distribución de planta en una empresa del sector lácteo</td>
<td>Oscar David Quiceno; Nathaly Zuluaga García</td>
<td>2012</td>
<td>Diseño de planta a partir de un análisis y evaluación del sistema productivo, flujo, manejo de materiales en la instalación de la empresa y un estudio de tiempos de los procesos.</td>
<td>Aumento de la eficiencia en la disposición del 13,49% y 26,61% en la propuesta de recibo y de silo respectivamente.</td>
</tr>
<tr>
<td>Diseño de distribución en planta de una empresa textil</td>
<td>Martín Muñoz Cabanillas</td>
<td>2004</td>
<td>Optimizar la disposición de los elementos del ciclo productivo mediante el diseño de panta, con el fin de elevar niveles de productividad.</td>
<td>Disminución de los costos de producción y aumento de la productividad, dado el buen funcionamiento de los procesos ejecutados.</td>
</tr>
<tr>
<td>Layout design for a low capacity manufacturing: A case study</td>
<td>Filippo De Carlo; Maria Antonietta Arleo; Orlando Borgia; Mario Tucci</td>
<td>2013</td>
<td>Re-diseño de línea de manufactura aplicando: metodología empírica, planeación sistémica de la distribución en planta SLP y lean.</td>
<td>Disminución del tiempo de procesamiento en 2.95%, 3.9% y 4.15%, para la metodología empírica, el SLP y el Lean respectivamente; Disminución del 15% y 24% en el tiempo de movimiento de los trabajadores con SLP y Lean.</td>
</tr>
<tr>
<td>Propuesta de mejoramiento de un centro de distribución de retail, a través de la distribución en planta y el rediseño de los procesos operativos de recepción, almacenamiento, alistamiento y despacho</td>
<td>Lina Rocío Martínez Flórez</td>
<td>2009</td>
<td>Proponer un Layout para el centro de distribución, basada en la determinación de una gestión de inventarios, que optimice el flujo de material y el desarrollo de la operación.</td>
<td>Mejoramiento en el almacenamiento mediante la instalación de estantería especial, correcta manipulación y disminución en los tiempos de Picking y averías.</td>
</tr>
<tr>
<td>Título</td>
<td>Autor</td>
<td>Año</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rediseño del sistema productivo utilizando técnicas de distribución de planta. Caso de estudio planta procesadora de alimentos</td>
<td>Cesar Julio Collazos Valencia</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejorar la eficiencia y productividad por medio de la redistribución de plata, aplicando las técnicas de distribución de planta e ingeniería de métodos mediante un modelo de simulación en el software de Matlab.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los algoritmos genéticos aplicados mejoran el costo de la distribución en un 32.62% y 45.91%, estos tienen como objetivo distribuir los departamentos y las áreas de apoyo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propuestas de redistribución de planta para la posible realización de un proyecto de redistribución de planta en una empresa del sector textil</td>
<td>Danny Aurelio Barón Muñoz; Lina Mercedes Zapata Álvarez</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propuesta de redistribución de Aumento en el nivel de la planta basada en el trabajo de productividad y verificación Muther, aplicando las fases: de la viabilidad económica localización, distribución general dada las mejores y cambios del conjunto y plan de sobre las estaciones que distribución detallada e permiten el aprovechamiento instalación del área de trabajo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseño de la distribución de la nueva planta en la empresa</td>
<td>Noemí Carolina Maldonado García Játiva Cárdenas Maga</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estudio para el diseño de la distribución de planta, a partir del análisis de los tiempos de una alternativa que logra una producción en los procesos, eficiencia del 81%, disminuye realizando simulación de lo un 56,2% los desplazamientos obtenido por medio de y 61,25 los transportes en herramienta Blender y uso de la puente grúa. metodología SLP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propuesta para el mejoramiento de la distribución en planta de la empresa DERJOR LTDA</td>
<td>Paula Camila Correa Castellanos; Diana Alexandra Oliveros Real</td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propuesta de mejoramiento en la distribución en planta, aumentando la productividad, se compararon el método de carga-distancia con el método de triangulación.</td>
<td>En la comparación de los métodos se obtuvo que el método carga-distancia genera un aumento en la productividad de 53,8% mientras que el método de triangulación del 17,14%.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propuesta de diseño y distribución de planta para la empresa Alambres y Mallas S.A.</td>
<td>Kelly Catherine Chaparro Santos; Roger Alberto Sánchez Aguirre;</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseño y distribución del área productiva y logística con el fin de disminuir los desplazamientos de los tiempos perdidos en mediante la reubicación de las máquinas.</td>
<td>Disminución del traslado físico de material en un 22%, de los tiempos perdidos en transportes equivalentes en un 19% y en 50% el ahorro de</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Guillermo León Valencia Sanabria
tiempo por movimientos.
Optimización de la productividad en un 25%.

<table>
<thead>
<tr>
<th>Estado del Arte: Diseño de Almacén</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño de Almacén</td>
</tr>
<tr>
<td>Título</td>
</tr>
<tr>
<td>Diseño del sistema de almacenamiento y manejo de producto terminado en la fábrica de calzado Rómulo</td>
</tr>
<tr>
<td>Proyecto de mejoramiento del área de almacén en una fábrica de muebles metálicos</td>
</tr>
<tr>
<td>Material flow design in a warehouse. The case of S:t Eriks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado del Arte: Diseño y Distribución de Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metodología 5s</td>
</tr>
<tr>
<td>Título</td>
</tr>
<tr>
<td>Diseño de un Sistema de Gestión Basado en la Guachisaca, J.; Metodología de las 5S Caiche, S.; Ing. Aplicando al Proceso de Almacenamiento y Barrera D. Despacho de Producto</td>
</tr>
</tbody>
</table>
Terminado en una Empresa que se Dedica a la Fabricación y Comercialización de Pinturas

<table>
<thead>
<tr>
<th>Eileen Julieth Hernández</th>
<th>los elementos y materiales del área de trabajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of 5S on Lamprea; productivity, quality, Zulieth Melissa Camargo and industrial safety in Caucho Metal Ltda. Paloma María Teresa Martínez Sánchez.</td>
<td>Estudio para reconocer si la implementación de la metodología 5s en el área de producción de empresas PYME puede ser considerada una herramienta eficaz sobre los factores de calidad, productividad, seguridad industrial y clima organizacional. Liderazgo 24.35%</td>
</tr>
<tr>
<td>2015</td>
<td>Mejoramiento en: Condiciones del entorno 48.6% Comunicaciones 26.6% La estructura 53.9% Motivación 29.5% Cooperación 30.9% Sentido de pertenencia 36.1% Relaciones laborales 19.8%</td>
</tr>
</tbody>
</table>
Anexo B. Direccionamiento Estratégico

Misión:

Es misión de Punto de la Decoración BioPinturas S.A.S. asesorar a sus clientes reales y potenciales desarrollando con calidad, productos biodegradables, para suplir las necesidades de nuestro mercado objetivo, mediante la aplicación del conocimiento y apoyo en las nuevas tecnologías. Fin de satisfacer las expectativas de nuestro consumidor final acompañado de colaboradores altamente calificados.

Visión:

Para el año 2020 Punto de la Decoración BioPinturas S.A.S. en miras de finalizar una eficiente gestión ambiental, mantendrá un mercado en crecimiento desarrollando nuevas tecnologías, para crear productos con los que nuestra compañía en conjunto con nuestros clientes, aumentaremos los niveles de rentabilidad crecimiento y participación en el mercado.
Anexo C. Portafolio de Productos.

PORTAFOLIO DE PRODUCTOS

Productos Elaborados

<table>
<thead>
<tr>
<th>Producto Elaborado</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticorrosivo</td>
<td>Masilla</td>
</tr>
<tr>
<td>Barniz</td>
<td>Pasta</td>
</tr>
<tr>
<td>Carraplast</td>
<td>Adhesivo para baldosas</td>
</tr>
<tr>
<td>Esmalte</td>
<td>Pegante</td>
</tr>
<tr>
<td>Estuco</td>
<td>Porcelanato</td>
</tr>
<tr>
<td>Graniplas</td>
<td>Vinilo</td>
</tr>
</tbody>
</table>

Productos No Elaborados pero Comercializados

<table>
<thead>
<tr>
<th>Producto Comercializado</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerógrafo Jamaca</td>
<td>Lijadora</td>
</tr>
<tr>
<td>Alargadores y Extensiones</td>
<td>Lima metálica</td>
</tr>
<tr>
<td>Alicates</td>
<td>Lima Triangular</td>
</tr>
<tr>
<td>Anticorrosivo</td>
<td>Llana Plástica</td>
</tr>
<tr>
<td>Anti-hongos</td>
<td>Llave de Paso</td>
</tr>
<tr>
<td>Bisturí y Cuchillas</td>
<td>Llave para Manguera</td>
</tr>
<tr>
<td>Boquilla</td>
<td>Maceta</td>
</tr>
<tr>
<td>Brocas</td>
<td>Manguera de Gas</td>
</tr>
<tr>
<td>Brochas</td>
<td>Marco Segueta</td>
</tr>
<tr>
<td>Caballete</td>
<td>Martillo</td>
</tr>
<tr>
<td>Cable Dúplex</td>
<td>Mineral Negro y Blanco</td>
</tr>
<tr>
<td>Cabuya</td>
<td>Miple de Ducha</td>
</tr>
<tr>
<td>Cajas eléctricas</td>
<td>Nivel en Resina y Aluminio</td>
</tr>
<tr>
<td>Canaleta con Adhesivo</td>
<td>Pachas Carrasplas</td>
</tr>
<tr>
<td>Candados</td>
<td>Panel Max</td>
</tr>
<tr>
<td>Cartón</td>
<td>Panel Redondo y Cuadrado</td>
</tr>
<tr>
<td>Cera Crema</td>
<td>Pegante Bóxer</td>
</tr>
<tr>
<td>Cerradura</td>
<td>Perfil Angulo, Canal y para Base</td>
</tr>
<tr>
<td>Chapa en madera</td>
<td>Perimetal</td>
</tr>
<tr>
<td>Chazos</td>
<td>Pernos</td>
</tr>
<tr>
<td>Cinta</td>
<td>Pintura Exteriores</td>
</tr>
<tr>
<td>Malla, Transparente y papel</td>
<td>Metálica,</td>
</tr>
<tr>
<td>Clavos</td>
<td>Pistola Calafateo</td>
</tr>
<tr>
<td>Colbon</td>
<td>Poliuretano</td>
</tr>
<tr>
<td>Cornisa</td>
<td>Pulidora</td>
</tr>
<tr>
<td>Cortafrijo</td>
<td>Punta</td>
</tr>
<tr>
<td>Destapa Canecas</td>
<td>PVA</td>
</tr>
<tr>
<td>Dilatación Plástica</td>
<td>Registro de agua</td>
</tr>
<tr>
<td>Discos</td>
<td>Removedor</td>
</tr>
<tr>
<td>Ducha Electica</td>
<td>Resina</td>
</tr>
<tr>
<td>Epóxico</td>
<td>Rodillo</td>
</tr>
<tr>
<td>Escuadra</td>
<td>Sellador</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Esmaltes</td>
<td>Silicona</td>
</tr>
<tr>
<td>Espátula de Acero y Plástica</td>
<td>Sprite Laca, Acrílico, Anticorrosivo, Esmalte</td>
</tr>
<tr>
<td>Esquínero</td>
<td>Super Bonder</td>
</tr>
<tr>
<td>Estuco</td>
<td>Tapabocas</td>
</tr>
<tr>
<td>Flexómetro</td>
<td>Thinner</td>
</tr>
<tr>
<td>Galón Fondos</td>
<td>Tijera</td>
</tr>
<tr>
<td>Grata</td>
<td>Timbre (Botón)</td>
</tr>
<tr>
<td>Guantes</td>
<td>Tintes para Madera</td>
</tr>
<tr>
<td>Hombresolo</td>
<td>Tira Lamina y Perimetral</td>
</tr>
<tr>
<td>Impermeabilizante</td>
<td>Tiro Cremallera</td>
</tr>
<tr>
<td>Impermeabilizante Paraguas,</td>
<td>Tomas parabólicas y telefónicas</td>
</tr>
<tr>
<td>Zocalo</td>
<td></td>
</tr>
<tr>
<td>Interruptores</td>
<td>Tornillos</td>
</tr>
<tr>
<td>Kit Sierra Copa</td>
<td>Trafico</td>
</tr>
<tr>
<td>Laca</td>
<td>Tronzadora</td>
</tr>
<tr>
<td>Lamina Dryboard, RH y PVC</td>
<td>Unión H</td>
</tr>
<tr>
<td>Lamina PVC y Pino</td>
<td>Varsol</td>
</tr>
<tr>
<td>Laminado Plano Madera</td>
<td>Veneciano</td>
</tr>
<tr>
<td>Lámpara Sensor</td>
<td>Vinilo</td>
</tr>
<tr>
<td>Lija Negra, de Tela y Roja</td>
<td>Yeso</td>
</tr>
</tbody>
</table>
Anexo D. Ventas de los últimos dos años y medio de la empresa BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Adhesivo</th>
<th>Pintura</th>
<th>Agregados</th>
<th>Abrasivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>ene</td>
<td>$1.196.420</td>
<td>$2.921.421</td>
<td>$2.678.513</td>
<td>$191.000</td>
</tr>
<tr>
<td>2015</td>
<td>feb</td>
<td>$998.000</td>
<td>$2.439.022</td>
<td>$1.547.509</td>
<td>$67.500</td>
</tr>
<tr>
<td>2015</td>
<td>mar</td>
<td>$975.000</td>
<td>$3.584.440</td>
<td>$863.500</td>
<td>$521.000</td>
</tr>
<tr>
<td>2015</td>
<td>abr</td>
<td>$465.000</td>
<td>$2.370.950</td>
<td>$1.708.500</td>
<td>$299.500</td>
</tr>
<tr>
<td>2015</td>
<td>may</td>
<td>$605.480</td>
<td>$2.647.474</td>
<td>$1.015.640</td>
<td>$135.367</td>
</tr>
<tr>
<td>2015</td>
<td>jun</td>
<td>$93.800</td>
<td>$4.480.200</td>
<td>$1.132.000</td>
<td>$197.000</td>
</tr>
<tr>
<td>2015</td>
<td>jul</td>
<td>$1.071.800</td>
<td>$4.560.374</td>
<td>$2.378.400</td>
<td>$135.000</td>
</tr>
<tr>
<td>2015</td>
<td>ago</td>
<td>$444.902</td>
<td>$3.879.085</td>
<td>$3.023.500</td>
<td>$328.000</td>
</tr>
<tr>
<td>2015</td>
<td>sep</td>
<td>$1.209.500</td>
<td>$6.516.437</td>
<td>$3.572.900</td>
<td>$131.620</td>
</tr>
<tr>
<td>2015</td>
<td>oct</td>
<td>$639.800</td>
<td>$7.997.130</td>
<td>$11.177.000</td>
<td>$406.820</td>
</tr>
<tr>
<td>2015</td>
<td>nov</td>
<td>$1.033.300</td>
<td>$8.859.505</td>
<td>$3.596.040</td>
<td>$472.600</td>
</tr>
<tr>
<td>2015</td>
<td>dic</td>
<td>$471.000</td>
<td>$4.563.862</td>
<td>$885.900</td>
<td>$1.251.000</td>
</tr>
<tr>
<td>2016</td>
<td>ene</td>
<td>$1.494.100</td>
<td>$27.897.480</td>
<td>$2.346.450</td>
<td>$800.700</td>
</tr>
<tr>
<td>2016</td>
<td>feb</td>
<td>$3.638.600</td>
<td>$22.793.409</td>
<td>$3.658.300</td>
<td>$578.000</td>
</tr>
<tr>
<td>2016</td>
<td>mar</td>
<td>$3.647.800</td>
<td>$26.156.152</td>
<td>$7.367.615</td>
<td>$381.500</td>
</tr>
<tr>
<td>2016</td>
<td>abr</td>
<td>$1.383.000</td>
<td>$23.100.545</td>
<td>$4.680.200</td>
<td>$365.410</td>
</tr>
<tr>
<td>2016</td>
<td>may</td>
<td>$2.156.200</td>
<td>$30.300.495</td>
<td>$4.344.500</td>
<td>$261.428</td>
</tr>
<tr>
<td>2016</td>
<td>jun</td>
<td>$2.958.403</td>
<td>$37.511.000</td>
<td>$3.702.350</td>
<td>$419.874</td>
</tr>
<tr>
<td>2016</td>
<td>jul</td>
<td>$3.124.800</td>
<td>$29.026.287</td>
<td>$4.051.000</td>
<td>$648.437</td>
</tr>
<tr>
<td>2016</td>
<td>ago</td>
<td>$831.100</td>
<td>$7.658.000</td>
<td>$348.000</td>
<td>$232.000</td>
</tr>
<tr>
<td>2016</td>
<td>sep</td>
<td>$900.855</td>
<td>$22.448.607</td>
<td>$3.734.200</td>
<td>$576.000</td>
</tr>
<tr>
<td>2016</td>
<td>oct</td>
<td>$1.825.454</td>
<td>$20.519.102</td>
<td>$2.330.500</td>
<td>$137.000</td>
</tr>
<tr>
<td>2016</td>
<td>nov</td>
<td>$1.586.500</td>
<td>$29.866.024</td>
<td>$5.591.900</td>
<td>$450.245</td>
</tr>
<tr>
<td>2016</td>
<td>dic</td>
<td>$1.387.300</td>
<td>$17.399.900</td>
<td>$3.377.600</td>
<td>$130.000</td>
</tr>
<tr>
<td>2017</td>
<td>ene</td>
<td>$2.779.500</td>
<td>$13.980.665</td>
<td>$3.673.144</td>
<td>$391.000</td>
</tr>
<tr>
<td>2017</td>
<td>feb</td>
<td>$2.038.000</td>
<td>$23.749.347</td>
<td>$5.667.925</td>
<td>$749.800</td>
</tr>
<tr>
<td>2017</td>
<td>mar</td>
<td>$2.394.335</td>
<td>$24.994.287</td>
<td>$2.739.500</td>
<td>$213.500</td>
</tr>
<tr>
<td>2017</td>
<td>abr</td>
<td>$1.751.500</td>
<td>$16.921.400</td>
<td>$1.731.940</td>
<td>$71.000</td>
</tr>
</tbody>
</table>
Anexo E. Calculo Error de Pronóstico Autorregresivo.

ERROR ADHESIVO

| | Y | ^Y | Error | Error Absoluto | e2 | (y-^y)/y | |y-^y|/y |
|---|---------|---------|--------|----------------|---------|----------|-----|-----|
|1 | 1148920 | | | | | | | |
|2 | 969999,987 | | | | | | | |
|3 | 919999,99 | | | | | | | |
|4 | 390999,994 | | | | | | | |
|5 | 561479,998 | | | | | | | |
|6 | 83800 | | | | | | | |
|7 | 1058800 | | | | | | | |
|8 | 400902 | | | | | | | |
|9 | 1165500 | | | | | | | |
|10 | 623800 | | | | | | | |
|11 | 97300 | | | | | | | |
|12 | 256000 | | | | | | | |
|13 | 1369900 | 2167610 | -797710 | 797710 | 6,3634E+11 | -0,58231258 | 0,58231258 |
|14 | 2528100 | 2089234 | 438866 | 438866 | 1,926E+11 | 0,17359519 | 0,17359519 |
|15 | 3108300 | 2553371 | 554929 | 554929 | 3,0795E+11 | 0,17853135 | 0,17853135 |
|16 | 1190000 | 1477221 | -287221 | 287221 | 8,2496E+10 | -0,24136218 | 0,24136218 |
|17 | 1656700 | 1950693 | -293993 | 293993 | 8,6432E+10 | -0,17745699 | 0,17745699 |
|18 | 1976480 | 1362643 | 613837 | 613837 | 3,768E+11 | 0,31057081 | 0,31057081 |
|19 | 2719800 | 2617098 | 102702 | 102702 | 1,0548E+10 | 0,03776086 | 0,03776086 |
|20 | 707100 | 1272773 | -565673 | 565673 | 3,1999E+11 | -0,7999901 | 0,7999901 |
|21 | 619200 | 291830 | 327370 | 327370 | 1,0717E+11 | 0,52869832 | 0,52869832 |
|22 | 1474500 | 1539558 | -65058,0001 | 65058,0001 | 4232543375 | -0,04412208 | 0,04412208 |
|23 | 1439500 | 1616982 | -177482 | 177482 | 3,15E+10 | -0,1232942 | 0,1232942 |
|24 | 999300 | 903716 | 95584 | 95584 | 9136301050 | 0,09565096 | 0,09565096 |
|25 | 2531500 | 2248572 | 282928 | 282928 | 8,0048E+10 | 0,11176299 | 0,11176299 |
|26 | 1902500 | 2097078 | -194578 | 194578 | 3,7861E+10 | -0,1022749 | 0,1022749 |
|27 | 2212335 | 2149016 | 63318,9998 | 63318,9998 | 4009295741 | 0,02862089 | 0,02862089 |
|28 | 1447500 | 1543529 | -97829,0002 | 97829,0002 | 9570513273 | -0,0675848 | 0,0675848 |

SUMA | -9,0019663 | 4959079 | 2,2967E+12 | -0,67320646 | 3,60358921 |

Resumen

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>16</td>
<td>MAPE</td>
<td>22,5%</td>
<td>MAD</td>
<td>309942,437</td>
<td></td>
</tr>
</tbody>
</table>

ERROR PINTURA

| | Y | ^Y | Error | Error Absoluto | e2 | (y-^y)/y | |y-^y|/y |
|---|-------|-------|-------|----------------|----|----------|------|------|
| 1 | 2921421,3 | | | | | | | |
| 2 | 2439022,43 | | | | | | | |
| 3 | 3584439,97 | | | | | | | |
| 4 | 2370949,97 | | | | | | | |
| 5 | 2647474,17 | | | | | | | |
| 6 | 4480200 | | | | | | | |
| 7 | 4560374,16 | | | | | | | |
| 8 | 3879085 | | | | | | | |
| 9 | 6516437 | | | | | | | |
|10 | 7997130 | | | | | | | |
|11 | 8859505 | | | | | | | |
|12 | 4563862 | | | | | | | |
|13 | 27897480 | 24790519 | 3106961 | 3106961 | 9,6532E+12 | 0,11137067 | 0,11137067 |
|14 | 22793409,4 | 28401027 | -5607617,62 | 5607617,62 | 3,1445E+13 | -0,24601926 | 0,24601926 |
|15 | 26156152 | 28340989 | -2184837 | 2184837 | 4,7735E+12 | -0,08353052 | 0,08353052 |
|16 | 23100545 | 21685051 | 1415494 | 1415494 | 2,0036E+12 | 0,06127535 | 0,06127535 |
|17 | 30300495 | 28356708 | 1943787 | 1943787 | 3,7783E+12 | 0,06415034 | 0,06415034 |
|18 | 37511000 | 31442817 | 6068183 | 6068183 | 3,6823E+13 | 0,16177076 | 0,16177076 |
|19 | 29026286,9 | 27064115 | 1962171,93 | 1962171,93 | 3,8501E+12 | 0,06759983 | 0,06759983 |
|20 | 7658000 | 13974811 | -6316811 | 6316811 | 3,9902E+13 | -0,82486433 | 0,82486433 |
|21 | 22448607,4 | 25718475 | -3269867,6 | 3269867,6 | 1,0692E+13 | -0,14566015 | 0,14566015 |
|22 | 20519102,2 | 19460889 | 1058213,24 | 1058213,24 | 1,1198E+12 | 0,0515721 | 0,0515721 |
|23 | 29866024 | 28949279 | 916744,997 | 916744,997 | 8,4042E+11 | 0,03069525 | 0,03069525 |
|24 | 17399900 | 15663292 | 1736608 | 1736608 | 3,0158E+12 | 0,09980563 | 0,09980563 |
|25 | 13980665 | 10165902 | 3814763 | 3814763 | 1,4552E+13 | 0,27285991 | 0,27285991 |
|26 | 23749347 | 24846315 | -1096968 | 1096968 | 1,2033E+12 | -0,0461894 | 0,0461894 |
|27 | 24994287 | 28394306 | -3400019 | 3400019 | 1,156E+13 | -0,13603185 | 0,13603185 |
|28 | 16921400 | 17068215 | -146815 | 146815 | 2,1555E+10 | -0,00867629 | 0,00867629 |
| | SUMA | | -9,07198505 | 44045861,4 | 1,7523E+14 | -0,56987196 | 2,41207162 |

Resumen

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>16</td>
<td>MAPE</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>2752866,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERROR AGREGADOS

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2678512.59</td>
<td>1929587</td>
<td>416863</td>
<td>416863</td>
<td>1.73775E+11</td>
<td>0.17765689</td>
<td>0.17765686</td>
</tr>
<tr>
<td>2</td>
<td>1547509.01</td>
<td>-558717</td>
<td>558717</td>
<td>3.12165E+11</td>
<td>-0.15272586</td>
<td>0.15272586</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>863499.952</td>
<td>717168</td>
<td>717168</td>
<td>5.1433E+11</td>
<td>0.09734059</td>
<td>0.09734059</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1708500</td>
<td>390799</td>
<td>390799</td>
<td>1.52724E+11</td>
<td>0.08350049</td>
<td>0.08350049</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1015640</td>
<td>261940</td>
<td>261940</td>
<td>6.8612563557</td>
<td>0.06029232</td>
<td>0.06029232</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3023500</td>
<td>-664128</td>
<td>664128</td>
<td>4.41066E+11</td>
<td>-0.17938012</td>
<td>0.17938012</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3572900</td>
<td>723071</td>
<td>723071</td>
<td>5.22832E+11</td>
<td>0.17849198</td>
<td>0.17849177</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11177000</td>
<td>3671026921</td>
<td>1.7410632</td>
<td>0.17410632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3596040</td>
<td>4051000</td>
<td>405399</td>
<td>1.64348E+11</td>
<td>-0.10856382</td>
<td>0.10856381</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>885900</td>
<td>348000</td>
<td>60589</td>
<td>60589</td>
<td>3.671026921</td>
<td>0.17410632</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3734200</td>
<td>559200</td>
<td>310106</td>
<td>310106</td>
<td>9.6165731141</td>
<td>0.05545628</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2330500</td>
<td>3377600</td>
<td>-1479244</td>
<td>-1479244</td>
<td>2.18816E+12</td>
<td>-0.43795713</td>
<td>0.43795712</td>
</tr>
<tr>
<td>13</td>
<td>5591000</td>
<td>3673144</td>
<td>527982</td>
<td>527982</td>
<td>2.78765E+11</td>
<td>0.14374117</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5667925</td>
<td>2739500</td>
<td>195210</td>
<td>195210</td>
<td>3.8106944176</td>
<td>-0.07125753</td>
<td>0.07125752</td>
</tr>
<tr>
<td>15</td>
<td>3377600</td>
<td>-1681170</td>
<td>1681170</td>
<td>2.82633E+12</td>
<td>-0.97068605</td>
<td>0.97068605</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SUMA</td>
<td>-8.00226461</td>
<td>9967728</td>
<td>9.88184E+12</td>
<td>-0.63870502</td>
<td>3.20243599</td>
<td></td>
</tr>
</tbody>
</table>

Resumen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>16</td>
</tr>
<tr>
<td>MAPE</td>
<td>20%</td>
</tr>
<tr>
<td>MAD</td>
<td>622983</td>
</tr>
</tbody>
</table>
Anexo F. Graficas Señal de Rastreo.

Gráfica

Señal de rastreo de pronóstico de ventas de familia Adhesivo

Gráfica

Señal de rastreo de pronóstico de ventas de familia Agregados

Gráfica

Señal de rastreo de pronóstico de ventas de familia Pinturas
Anexo G. Detalle materia prima para productos fabricados en la empresa BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Costo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antinat - adimon cosmos</td>
<td>0,4</td>
<td>kg</td>
<td>$1.133</td>
</tr>
<tr>
<td>Carbonato de calcio</td>
<td>80</td>
<td>kg</td>
<td>$68.000</td>
</tr>
<tr>
<td>Bentoclay AP 184</td>
<td>1</td>
<td>kg</td>
<td>$12.000</td>
</tr>
<tr>
<td>Disperby K 108 3 kg cosmos</td>
<td>0,7</td>
<td>kg</td>
<td>$1.167</td>
</tr>
<tr>
<td>Octoato de calcio 10%</td>
<td>1,3</td>
<td>kg</td>
<td>$3.813</td>
</tr>
<tr>
<td>Octoato de cobalto 12%</td>
<td>0,5</td>
<td>kg</td>
<td>$4.458</td>
</tr>
<tr>
<td>Octoato de zirconio 24%</td>
<td>1,3</td>
<td>kg</td>
<td>$6.869</td>
</tr>
<tr>
<td>Pasta negra</td>
<td>1,5</td>
<td>kg</td>
<td>$11.639</td>
</tr>
<tr>
<td>Resina media en soya RA 026</td>
<td>40</td>
<td>kg</td>
<td>$150.000</td>
</tr>
<tr>
<td>Resina media en tofa al 50%</td>
<td>40</td>
<td>kg</td>
<td>$148.960</td>
</tr>
<tr>
<td>Microtalco blanco malla 500</td>
<td>15</td>
<td>kg</td>
<td>$22.500</td>
</tr>
<tr>
<td>Dióxido de titanio chino</td>
<td>12</td>
<td>kg</td>
<td>$102.000</td>
</tr>
<tr>
<td>Galón varsol</td>
<td>25</td>
<td>Galones</td>
<td>$300.000</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$832.539</td>
</tr>
<tr>
<td>Graniplas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonato de calcio</td>
<td>100</td>
<td>kg</td>
<td>$85.000</td>
</tr>
<tr>
<td>PVA cosmoacril veova E</td>
<td>36</td>
<td>kg</td>
<td>$36.450</td>
</tr>
<tr>
<td>Tilosa HS blanco kilo 100000</td>
<td>1</td>
<td>kg</td>
<td>$28.000</td>
</tr>
<tr>
<td>Arena blanca 5015c</td>
<td>270</td>
<td>kg</td>
<td>$45.900</td>
</tr>
<tr>
<td>Agua</td>
<td>20</td>
<td>gal</td>
<td>$0.55</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$195.351</td>
</tr>
<tr>
<td>Vinilo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceite pino</td>
<td>0,5</td>
<td>kg</td>
<td>$3.850</td>
</tr>
<tr>
<td>Indol NDW (antiespumante)</td>
<td>0,6</td>
<td>kg</td>
<td>$1.840</td>
</tr>
<tr>
<td>Bactericida</td>
<td>1,5</td>
<td>kg</td>
<td>$16.500</td>
</tr>
<tr>
<td>Caolín Caomint blanco</td>
<td>25</td>
<td>kg</td>
<td>$31.125</td>
</tr>
<tr>
<td>Carbonato de calcio 1nt</td>
<td>250</td>
<td>kg</td>
<td>$340.000</td>
</tr>
<tr>
<td>Carbonato de calcio 2nt</td>
<td>150</td>
<td>kg</td>
<td>$127.500</td>
</tr>
<tr>
<td>Carbonato de calcio 4nt</td>
<td>100</td>
<td>kg</td>
<td>$52.000</td>
</tr>
<tr>
<td>Dispersante indol RM</td>
<td>1,5</td>
<td>kg</td>
<td>$2.750</td>
</tr>
<tr>
<td>Monoetilen glicol</td>
<td>13</td>
<td>kg</td>
<td>$78.000</td>
</tr>
<tr>
<td>Soda caustica nivelado</td>
<td>0,2</td>
<td>kg</td>
<td>$1.600</td>
</tr>
<tr>
<td>Talcio Econim 068</td>
<td>80</td>
<td>kg</td>
<td>$120.000</td>
</tr>
<tr>
<td>Coalescente Texanol</td>
<td>6</td>
<td>kg</td>
<td>$42.000</td>
</tr>
<tr>
<td>Latecol espesante H.V.</td>
<td>1,5</td>
<td>kg</td>
<td>$12.000</td>
</tr>
<tr>
<td>Tilosa cellueast 40.000</td>
<td>4</td>
<td>kg</td>
<td>$104.000</td>
</tr>
<tr>
<td>Materia prima</td>
<td>Cantidad</td>
<td>Unidad</td>
<td>Costo total</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Titanio schatlerben R 660</td>
<td>70</td>
<td>kg</td>
<td>$770.000</td>
</tr>
<tr>
<td>Tripolifosfato Pquim</td>
<td>0,3</td>
<td>kg</td>
<td>$1.575</td>
</tr>
<tr>
<td>Agua</td>
<td>115</td>
<td>gal</td>
<td>$3</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$1.704.743</td>
</tr>
</tbody>
</table>

Adhesivos

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Costo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena amarilla corriente</td>
<td>860</td>
<td>kg</td>
<td>$86.000</td>
</tr>
<tr>
<td>Cemento blanco argos</td>
<td>130</td>
<td>kg</td>
<td>$208.000</td>
</tr>
<tr>
<td>Látex para adhesivo 2704</td>
<td>5</td>
<td>kg</td>
<td>$45.000</td>
</tr>
<tr>
<td>Tilosa para adhesivo</td>
<td>1,5</td>
<td>kg</td>
<td>$33.000</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$372.000</td>
</tr>
</tbody>
</table>

Agregados - Carraplast

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Costo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indol NDW (antiespumante)</td>
<td>0,5</td>
<td>kg</td>
<td>$1.533</td>
</tr>
<tr>
<td>Bactericida</td>
<td>1</td>
<td>kg</td>
<td>$11.000</td>
</tr>
<tr>
<td>Carbonato de calcio malla 325</td>
<td>400</td>
<td>kg</td>
<td>$120.000</td>
</tr>
<tr>
<td>Carbonato de calcio malla 400</td>
<td>300</td>
<td>kg</td>
<td>$105.000</td>
</tr>
<tr>
<td>Monoetilen glicol</td>
<td>4</td>
<td>kg</td>
<td>$24.000</td>
</tr>
<tr>
<td>PVA Cosmoacril H 100</td>
<td>40</td>
<td>kg</td>
<td>$37.000</td>
</tr>
<tr>
<td>Soda caustica nivelador</td>
<td>0,3</td>
<td>kg</td>
<td>$2.400</td>
</tr>
<tr>
<td>Talcomin blanco 635 * 25</td>
<td>25</td>
<td>kg</td>
<td>$20.000</td>
</tr>
<tr>
<td>Coalecente Texanol</td>
<td>2</td>
<td>kg</td>
<td>$14.000</td>
</tr>
<tr>
<td>Latecol espesante H.V.</td>
<td>1</td>
<td>kg</td>
<td>$8.000</td>
</tr>
<tr>
<td>Tilosa HS blanco kilo 100000</td>
<td>2,5</td>
<td>kg</td>
<td>$70.000</td>
</tr>
<tr>
<td>Agua</td>
<td>115</td>
<td>gal</td>
<td>$3,13</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$412.936</td>
</tr>
</tbody>
</table>

Esmalte - Barniz

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Costo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antinat - adimon cosmos</td>
<td>0,4</td>
<td>kg</td>
<td>$1.133</td>
</tr>
<tr>
<td>Bentoclay AP 184</td>
<td>1</td>
<td>kg</td>
<td>$12.000</td>
</tr>
<tr>
<td>Disperby K 108 3 kg cosmos</td>
<td>1</td>
<td>kg</td>
<td>$1.667</td>
</tr>
<tr>
<td>Octoato de calcio 10%</td>
<td>1,5</td>
<td>kg</td>
<td>$4.400</td>
</tr>
<tr>
<td>Octoato de cobalto 12%</td>
<td>0,5</td>
<td>kg</td>
<td>$4.458</td>
</tr>
<tr>
<td>Octoato de zirconio 24%</td>
<td>1,5</td>
<td>kg</td>
<td>$7.926</td>
</tr>
<tr>
<td>Resina media en Tofa al 50%</td>
<td>100</td>
<td>kg</td>
<td>$372.400</td>
</tr>
<tr>
<td>Titanio schatlerben R 660</td>
<td>23</td>
<td>kg</td>
<td>$253.000</td>
</tr>
<tr>
<td>Galon varsol</td>
<td>25</td>
<td>Galones</td>
<td>$300.000</td>
</tr>
<tr>
<td>Total MP</td>
<td></td>
<td></td>
<td>$956.984</td>
</tr>
</tbody>
</table>
Anexo H. Detalle producto terminado para productos fabricados en la empresa BioPinturas S.A.S.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Lote</th>
<th>Precio Venta ($/gal)</th>
<th>Total PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticorrosivo</td>
<td>225</td>
<td>26.500</td>
<td>5.962.500</td>
</tr>
<tr>
<td>Vinilo</td>
<td>225</td>
<td>24.000</td>
<td>5.400.000,00</td>
</tr>
<tr>
<td>Estuco</td>
<td>150</td>
<td>11.500</td>
<td>1.725.000</td>
</tr>
<tr>
<td>Masilla</td>
<td>150</td>
<td>11.000</td>
<td>1.650.000</td>
</tr>
<tr>
<td>Carraplast</td>
<td>150</td>
<td>7.500</td>
<td>1.125.000</td>
</tr>
<tr>
<td>Esmalte</td>
<td>225</td>
<td>30.000</td>
<td>6.750.000</td>
</tr>
<tr>
<td>Barniz</td>
<td>225</td>
<td>26.500</td>
<td>5.962.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Producto</th>
<th>Lote (Kg)</th>
<th>Precio Venta ($/kg)</th>
<th>Total PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graniplas</td>
<td>450</td>
<td>1.100</td>
<td>495.000</td>
</tr>
<tr>
<td>Adhesivo para baldosas</td>
<td>1000</td>
<td>400</td>
<td>400.000</td>
</tr>
<tr>
<td>Porcelanato</td>
<td>1000</td>
<td>550</td>
<td>550.000</td>
</tr>
<tr>
<td>Pegante</td>
<td>1000</td>
<td>1.800</td>
<td>1.800.000</td>
</tr>
<tr>
<td>Pasta</td>
<td>600</td>
<td>10.100</td>
<td>6.060.000</td>
</tr>
</tbody>
</table>
Anexo I. Detalle de áreas complementarias.

Maquina Agitadora

Maquina Pegaenchape
Anexo J. Método Húngaro en Propuesta seis.

Seguido se resta el vector columna de la matriz Q_{ij} formado por los menores valores y se resta el vector de la matriz Q_{ij} de cada fila de los menores valores, de esta manera se obtiene la siguiente matriz Q' donde se señala la fila y columna que contienen ceros para que en la intercepción subrayada en la matriz, se sume el menor valor entre los elementos que no son nulos y no están señalados es decir 3244653,11 por último se resta este mismo en los elementos no nulos.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitadora</td>
<td>805482291,6</td>
<td>703406714,1</td>
<td>0</td>
<td>1403831354</td>
</tr>
<tr>
<td>Estuco</td>
<td>118104965,2</td>
<td>103137991,1</td>
<td>0</td>
<td>205838731,6</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>3715504,236</td>
<td>3244653,114</td>
<td>0</td>
<td>6475550,608</td>
</tr>
<tr>
<td>Trompo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Generando así la siguiente la siguiente matriz Q'' ya que aún no es posible la asignación de una máquina a un área, se repite el proceso anterior, señalando las filas o columnas donde se encuentre por lo menos un cero, y se selecciona el número menor entre los elementos no nulos y no seleccionados 470851,12, para ser sumado en las intersecciones.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitadora</td>
<td>802237638,5</td>
<td>700162060,9</td>
<td>0</td>
<td>1400586701</td>
</tr>
<tr>
<td>Estuco</td>
<td>114860312,1</td>
<td>99893338,04</td>
<td>0</td>
<td>202594078,5</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>470851,1221</td>
<td>0</td>
<td>0</td>
<td>3230897,495</td>
</tr>
<tr>
<td>Trompo</td>
<td>0</td>
<td>0</td>
<td>3244653,11</td>
<td>0</td>
</tr>
</tbody>
</table>

Una vez sumado y restado el número seleccionado en la matriz anterior, se repite el proceso en este caso con el número 99893338,04, para finalmente hallar la siguiente matriz Q''':

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitadora</td>
<td>801766787,4</td>
<td>700162060,9</td>
<td>0</td>
<td>1400115850</td>
</tr>
<tr>
<td>Estuco</td>
<td>114389460,9</td>
<td>99893338,04</td>
<td>0</td>
<td>202123227,3</td>
</tr>
<tr>
<td>Pegaenchape</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2760046,373</td>
</tr>
<tr>
<td>Trompo</td>
<td>0</td>
<td>470851,1221</td>
<td>3715504,24</td>
<td>0</td>
</tr>
</tbody>
</table>
Anexo K. Jerarquización ABC por familia.

<table>
<thead>
<tr>
<th>Ferretería</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillería</td>
<td>31101,6</td>
<td>A</td>
</tr>
<tr>
<td>Perfiles - accesorios</td>
<td>11886</td>
<td>B</td>
</tr>
<tr>
<td>Ferretería</td>
<td>3420</td>
<td>C</td>
</tr>
<tr>
<td>Tiro</td>
<td>2945</td>
<td>C</td>
</tr>
<tr>
<td>Lija</td>
<td>1491</td>
<td>C</td>
</tr>
<tr>
<td>Cinta</td>
<td>628</td>
<td>C</td>
</tr>
<tr>
<td>Estopa</td>
<td>27</td>
<td>C</td>
</tr>
<tr>
<td>Broca</td>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>Metro</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Guante</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pintura</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graniplas</td>
<td>6514</td>
<td>A</td>
</tr>
<tr>
<td>Vinilo</td>
<td>1866</td>
<td>B</td>
</tr>
<tr>
<td>Esmalte</td>
<td>631</td>
<td>B</td>
</tr>
<tr>
<td>Thinner</td>
<td>372</td>
<td>C</td>
</tr>
<tr>
<td>Sprite</td>
<td>189</td>
<td>C</td>
</tr>
<tr>
<td>Carraplast</td>
<td>147</td>
<td>C</td>
</tr>
<tr>
<td>Barniz</td>
<td>92</td>
<td>C</td>
</tr>
<tr>
<td>Trafico</td>
<td>42</td>
<td>C</td>
</tr>
<tr>
<td>Veneciano</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>Tintes</td>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>Laca</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>Fondo</td>
<td>14</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agregados</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasta</td>
<td>1899</td>
<td>A</td>
</tr>
<tr>
<td>Estuco</td>
<td>1027</td>
<td>B</td>
</tr>
<tr>
<td>Masilla</td>
<td>823</td>
<td>C</td>
</tr>
<tr>
<td>Caolin</td>
<td>775</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adhesivo</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesivo para baldosas, pegantes</td>
<td>1067</td>
<td>A</td>
</tr>
<tr>
<td>BioPintura y pegamentos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revestimientos</td>
<td>300</td>
<td>B</td>
</tr>
<tr>
<td>Porcelanato BioPintura</td>
<td>194</td>
<td>B</td>
</tr>
<tr>
<td>PVA BioPintura</td>
<td>77</td>
<td>C</td>
</tr>
<tr>
<td>Silicona</td>
<td>33</td>
<td>C</td>
</tr>
<tr>
<td>Sellador</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Accesorios Pintura</td>
<td>Cantidad</td>
<td>Tipo</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Rodillo</td>
<td>625</td>
<td>A</td>
</tr>
<tr>
<td>Brocha</td>
<td>344</td>
<td>B</td>
</tr>
<tr>
<td>Pincel</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Aerógrafo</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herramientas</td>
<td>168</td>
<td>A</td>
</tr>
<tr>
<td>Espátula</td>
<td>94</td>
<td>B</td>
</tr>
<tr>
<td>Bisturí</td>
<td>45</td>
<td>C</td>
</tr>
<tr>
<td>Disco</td>
<td>16</td>
<td>C</td>
</tr>
<tr>
<td>Repuestos</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eléctrico</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombillo</td>
<td>189</td>
<td>A</td>
</tr>
<tr>
<td>Eléctricos</td>
<td>74</td>
<td>B</td>
</tr>
<tr>
<td>Ducha</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abrasivo</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticorrosivo BioPintura</td>
<td>110</td>
<td>A</td>
</tr>
<tr>
<td>Removedor</td>
<td>1</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impermeabilizante</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraguas</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Frescasa eco</td>
<td>2</td>
<td>B</td>
</tr>
</tbody>
</table>
Anexo L. Cuestionario de Auditoria 5s para la planta.

<table>
<thead>
<tr>
<th>5S</th>
<th>#</th>
<th>Tema</th>
<th>Descripción</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clasificación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Materiales y partes</td>
<td>¿Materiales y partes en exceso de inventario o en proceso?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Maquinaria u otro equipo</td>
<td>¿Hay existencia innecesaria de maquinaria y/o equipo en un lugar?</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Herramientas</td>
<td>¿Existe exceso de herramientas en un lugar de trabajo?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Control visual</td>
<td>¿Existen letreros de señalización y de información?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Estándares escritos</td>
<td>¿Tienen estandarizado algún proceso 5s?</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Áreas</td>
<td>¿Las áreas están demarcadas?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Lugares de trabajo</td>
<td>¿Los lugares de trabajo se encuentran demarcados?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Indicadores de cantidad</td>
<td>¿Existe un control de inventario?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Vías de acceso y almacenamiento</td>
<td>¿Están demarcadas con líneas divisorias las áreas de acceso y almacenaje?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Herramientas</td>
<td>¿Poseen un lugar claramente identificado?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limpieza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Pisos</td>
<td>¿Están los pisos libres de suciedad?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Maquinas</td>
<td>¿Están las maquinas visiblemente limpias?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Mantenimiento</td>
<td>¿Existe un plan de limpieza y mantenimiento para las maquinas?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Seguimiento de limpieza</td>
<td>¿Hay una persona encargada de verificar la limpieza en la planta?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Hábito de limpieza</td>
<td>¿Se cuenta con un cronograma de limpieza?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo M. Cuestionario de Auditoría 5s para el almacén.

<table>
<thead>
<tr>
<th>5S</th>
<th>#</th>
<th>Tema</th>
<th>Descripción</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clasificación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Materiales o partes</td>
<td>¿Productos en exceso de inventario?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maquinaria u otro equipo</td>
<td>¿Hay existencia innecesaria de equipo en un lugar?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Herramientas</td>
<td>¿Existe exceso de herramientas en un lugar de trabajo?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Control visual</td>
<td>¿Existen letreros de señalización y de información?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Estándares escritos</td>
<td>¿Tienen estandarizado algún proceso 5s?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Áreas</td>
<td>¿Las áreas están demarcadas?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lugares de trabajo</td>
<td>¿Los lugares de trabajo se encuentran demarcados?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Indicadores de cantidad</td>
<td>¿Existe un control de inventario?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vías de acceso y almacenamiento</td>
<td>¿Están demarcadas con líneas divisorias las áreas de acceso y almacenaje?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Herramientas</td>
<td>¿Poseen un lugar claramente identificado?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limpieza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pisos</td>
<td>¿Están los pisos libres de suciedad?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Estanterías</td>
<td>¿Están los estantes visiblemente limpios?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mantenimiento</td>
<td>¿Existe un plan de limpieza y mantenimiento para los equipos?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Seguimiento de limpieza</td>
<td>¿Hay una persona encargada de verificar la limpieza en el almacén?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hábito de limpieza</td>
<td>¿Se cuenta con un cronograma de limpieza?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Categoría</td>
<td>Acción sugerida</td>
<td>Actividad</td>
<td>Ítem 5s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Herramientas</td>
<td>Eliminar</td>
<td>Desechar baldes que no se utilizarán</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Equipos</td>
<td>Eliminar - reparar</td>
<td>Desechar pesa que no funciona</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Maquinaria</td>
<td>Eliminar - reparar</td>
<td>Desechar agitadora que no funciona</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Equipos</td>
<td>Eliminar - reparar</td>
<td>Desechar motor dañado</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Materia prima</td>
<td>Eliminar</td>
<td>Desechar las tapas de los tanques de químicos</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Materia prima</td>
<td>Eliminar</td>
<td>Desechar bolsas plásticas de las MP recibidas</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Herramientas</td>
<td>Eliminar</td>
<td>Desechar bisturí</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Materia prima</td>
<td>Eliminar</td>
<td>Desechar empaques dañados</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Otro (llanta)</td>
<td>Eliminar</td>
<td>Desechar llanta</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Otro (tablas)</td>
<td>Eliminar</td>
<td>Desechar tablas</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Asignar un lugar para los químicos</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Asignar un lugar para cada una de las materias primas</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Materia prima</td>
<td>Reubicar</td>
<td>Ubicar todos los bultos sobre una estiba</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Herramientas</td>
<td>Reubicar - Agrupar</td>
<td>Clasificar y ordenar las herramientas</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Asignar un lugar para empaques</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Clasificar y ordenar empaques</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Otro (estante)</td>
<td>Reubicar</td>
<td>Desechar estante</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Otro (llave de agua)</td>
<td>Reubicar</td>
<td>Llaves de agua para maquinas</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Otro (áreas)</td>
<td>Señalar</td>
<td>Demarcar áreas de trabajo</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Otro (toma corriente)</td>
<td>Reubicar</td>
<td>Ubicar la toma corriente de la pesa adecuadamente</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Otro (toma corriente)</td>
<td>Señalar</td>
<td>Identificar las tomas corriente</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Otro (áreas)</td>
<td>Reubicar</td>
<td>Asignar un espacio para la oficina</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Otro (sistema contra incendios)</td>
<td>Reubicar</td>
<td>Instalar un sistema contra incendios</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Otro (sistema contra incendios)</td>
<td>Señalar</td>
<td>Señalar extintores</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Otro (Cajas de energía)</td>
<td>Señalar</td>
<td>Señalar cajas de energía de la planta</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Otro (Cajas de energía)</td>
<td>Reparar</td>
<td>Cerrar la caja de derivación</td>
<td>Clasificar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Otro (áreas)</td>
<td>Señalar</td>
<td>Demarcar un lugar para recepción y despacho de productos</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Otro (áreas)</td>
<td>Reubicar</td>
<td>Asignar un lugar para las bicicletas</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Otro (Cajas de energía)</td>
<td>Señalar</td>
<td>Señalar panel de energía de la maquina agitadora y estuco</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Otro (áreas)</td>
<td>Reubicar</td>
<td>Reubicar el locker en la oficina</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Clasificar, identificar y ordenar pallets vacíos</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materia prima</td>
<td>Reubicar - Agrupar</td>
<td>Clasificar materia prima</td>
<td>Orden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo O. Tarjetas rojas para actividades de Clasificación para el Punto de Venta.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Tarjeta</th>
<th>Área</th>
<th>Categoría</th>
<th>Acción sugerida</th>
<th>Actividad</th>
<th>Ítem 5s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punto de Venta</td>
<td>Producto terminado</td>
<td>Señalar</td>
<td>Identificar los productos</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Punto de Venta</td>
<td>Otro (toma corriente)</td>
<td>Reparar</td>
<td>Arreglar la toma corriente ubicada en la parte inferior del estante tres</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Punto de Venta</td>
<td>Producto terminado</td>
<td>Eliminar</td>
<td>Desechar las canecas que se encuentran debajo de los estantes abiertas</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Punto de Venta</td>
<td>Producto terminado</td>
<td>Señalar</td>
<td>Asignar un lugar para recepción de productos</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Punto de Venta</td>
<td>Producto terminado</td>
<td>Reubicar</td>
<td>Ubicar los bultos en la bodega</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Punto de Venta</td>
<td>Producto terminado</td>
<td>Eliminar</td>
<td>Desechar los productos con averías o vencidos</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Punto de Venta</td>
<td>Papelería</td>
<td>Reubicar</td>
<td>Ubicar un tablero de corcho para las facturas de entregas pendientes</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Almacén</td>
<td>Otro (toma corriente)</td>
<td>Señalar</td>
<td>Señalar la parte de conexiones</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Preparación de productos</td>
<td>Herramientas</td>
<td>Señalar</td>
<td>Clasificar y ordenar las herramientas</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Preparación de productos</td>
<td>Herramientas</td>
<td>Eliminar</td>
<td>Desechar las espátulas que ya no se usan o están dañadas</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bodega</td>
<td>Otro (Prendas)</td>
<td>Reubicar</td>
<td>Utilizar los lockers adecuadamente evitando colocar prendas encima de los productos</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Oficina</td>
<td>Papelería</td>
<td>Señalar</td>
<td>Clasificar materiales de oficina</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Oficina</td>
<td>Papelería</td>
<td>Agrupar</td>
<td>Clasificar las carpetas</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Oficina</td>
<td>Papelería</td>
<td>Reubicar</td>
<td>Asignar un lugar adecuado para las carpetas</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Preparación de productos</td>
<td>Producto terminado</td>
<td>Eliminar</td>
<td>Desechar los productos vencidos</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Preparación de productos</td>
<td>Herramientas</td>
<td>Agrupar</td>
<td>Asignar un lugar para las herramientas</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Punto de venta</td>
<td>Equipo</td>
<td>Reparar/Eliminar</td>
<td>Desechar o reparar computador</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Almacén</td>
<td>Otro (sistema contra incendios)</td>
<td>Reubicar</td>
<td>Asignar un lugar para los extintores</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Almacén</td>
<td>Otro (sistema contra incendios)</td>
<td>Señalar</td>
<td>Demarcar extintores</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Punto de venta</td>
<td>Papelería</td>
<td>Reubicar</td>
<td>Asignar un lugar para catálogo de colores de pintura</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Bodega</td>
<td>Otros (basura)</td>
<td>Eliminar</td>
<td>Desechar tapas o baldes utilizados e inservibles</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bodega</td>
<td>Material de empaque</td>
<td>Reubicar</td>
<td>Reubicar empaques en la planta</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Punto de venta</td>
<td>Otros (candados)</td>
<td>Reubicar</td>
<td>Asignar un lugar adecuado a los candados del almacén</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bodega</td>
<td>Otros (basura)</td>
<td>Eliminar</td>
<td>Desechar botellas, canecas, cartones y baldes que se encuentran en el piso</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bodega</td>
<td>Producto terminado</td>
<td>Eliminar</td>
<td>Desechar productos averiados</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>Núm.</td>
<td>Ubicación</td>
<td>Otro (bolsas)</td>
<td>Acción</td>
<td>Tarea descriptiva</td>
<td>Categoría</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Punto de venta</td>
<td>Reubicar</td>
<td></td>
<td>Reubicar bolsas de los estantes</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Bodega</td>
<td>Otro (enchufe)</td>
<td>Reparar</td>
<td>Reparar conexión del enchufe con el tubo de electricidad</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Bodega</td>
<td>Herramientas</td>
<td>Reubicar</td>
<td>Asignarle una ubicación a la escalera</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Bodega</td>
<td>Otro (Área)</td>
<td>Reparar</td>
<td>Iluminar el área de bodega en la que se encuentran los productos por bultos</td>
<td>Clasificar</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Almacén</td>
<td>Otro (Estantes y Pallets)</td>
<td>Señalar</td>
<td>Demarcar estantes y pallets</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Preparación de</td>
<td>Maquinaria</td>
<td>Señalar</td>
<td>Demarcar agitadora</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>productos</td>
<td></td>
<td></td>
<td>Asignar un lugar para la carretilla</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bodega</td>
<td>Equipos</td>
<td>Señalar</td>
<td>Demarcar carretilla</td>
<td>Orden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo P. Tarjetas amarillas para actividades de Clasificación en la Planta y el Punto de Venta.

Planta

<table>
<thead>
<tr>
<th># Tarjeta</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limpiar las máquinas</td>
</tr>
<tr>
<td>2</td>
<td>Limpiar los techos</td>
</tr>
<tr>
<td>3</td>
<td>Limpiar los equipos</td>
</tr>
<tr>
<td>4</td>
<td>Limpiar estante</td>
</tr>
<tr>
<td>5</td>
<td>Limpiar las paredes</td>
</tr>
<tr>
<td>6</td>
<td>Asignar un lugar para la basura</td>
</tr>
<tr>
<td>7</td>
<td>Limpiar escaleras</td>
</tr>
</tbody>
</table>

Punto de Venta

<table>
<thead>
<tr>
<th># Tarjeta</th>
<th>Área</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punto de Venta de productos</td>
<td>Limpiar con frecuencia los productos</td>
</tr>
<tr>
<td>2</td>
<td>Preparación</td>
<td>Limpiar máquina agitadora</td>
</tr>
<tr>
<td>3</td>
<td>Bodega</td>
<td>Limpiar piso de la bodega</td>
</tr>
<tr>
<td>4</td>
<td>Punto de venta</td>
<td>Limpiar las estanterías 11 y 12</td>
</tr>
<tr>
<td>5</td>
<td>Bodega</td>
<td>Arreglar las paredes tapando los huecos</td>
</tr>
<tr>
<td>6</td>
<td>Bodega</td>
<td>Limpiar y pintar las paredes</td>
</tr>
</tbody>
</table>
Anexo Q. Secuencia, tiempo y costo propuesto para la implementación de la metodología 5s.

<table>
<thead>
<tr>
<th>Nombre de tarea</th>
<th>Costo</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROYECTO</td>
<td>$ 2.258.108</td>
<td>27 días</td>
</tr>
<tr>
<td>CLASIFICACIÓN</td>
<td>$ 372.900</td>
<td>6 días</td>
</tr>
<tr>
<td>Capacitación</td>
<td>$ 200.600</td>
<td>2 días</td>
</tr>
<tr>
<td>Tarjetas rojas y amarillas</td>
<td>$ 5.000</td>
<td>1 día</td>
</tr>
<tr>
<td>Desechar objetos</td>
<td>$ -</td>
<td>2 días</td>
</tr>
<tr>
<td>Reparación</td>
<td>$ 247.900</td>
<td>1 día</td>
</tr>
<tr>
<td>Reparación caja de derivación</td>
<td>$ 17.900</td>
<td></td>
</tr>
<tr>
<td>Reparación conexiones eléctricas</td>
<td>$ 80.000</td>
<td></td>
</tr>
<tr>
<td>Instalación iluminación cuarto bodega</td>
<td>$ 150.000</td>
<td></td>
</tr>
<tr>
<td>Reparación pesa, agitadora y motor dañado</td>
<td>$ -</td>
<td></td>
</tr>
<tr>
<td>Reparación de pc</td>
<td>$ -</td>
<td></td>
</tr>
<tr>
<td>ORDEN</td>
<td>$ 1.266.000</td>
<td>15 días</td>
</tr>
<tr>
<td>Reubicación planta</td>
<td>$ -</td>
<td>1 día</td>
</tr>
<tr>
<td>Reubicación punto de venta</td>
<td>$ -</td>
<td>1 día</td>
</tr>
<tr>
<td>Clasificación de materia prima</td>
<td>$ -</td>
<td>1 día</td>
</tr>
<tr>
<td>Clasificación de herramientas</td>
<td>$ 160.000</td>
<td>1 día</td>
</tr>
<tr>
<td>Tablero de herramientas</td>
<td>$ 120.000</td>
<td></td>
</tr>
<tr>
<td>Instalación de cajón de herramientas preparación de</td>
<td>$ 40.000</td>
<td></td>
</tr>
<tr>
<td>productos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Señalización letreros</td>
<td>$ 155.100</td>
<td>1 día</td>
</tr>
<tr>
<td>Señalización tomacorriente</td>
<td>$ 34.800</td>
<td></td>
</tr>
<tr>
<td>Señalización caja y paneles de energía</td>
<td>$ 14.900</td>
<td></td>
</tr>
<tr>
<td>Señalización extintores</td>
<td>$ 9.900</td>
<td></td>
</tr>
<tr>
<td>Señalización catálogo y calculadoras</td>
<td>$ 3.000</td>
<td></td>
</tr>
<tr>
<td>Señalización materiales de oficina</td>
<td>$ 15.000</td>
<td></td>
</tr>
<tr>
<td>Señalización herramientas preparación de productos</td>
<td>$ 12.000</td>
<td></td>
</tr>
<tr>
<td>Señalización sistema de evacuación</td>
<td>$ 59.500</td>
<td></td>
</tr>
<tr>
<td>Señalización de herramientas</td>
<td>$ 6.000</td>
<td></td>
</tr>
<tr>
<td>Señalización productos y estanterías</td>
<td>$ 544.000</td>
<td>1 día</td>
</tr>
<tr>
<td>Señalización MP</td>
<td>$ 256.000</td>
<td></td>
</tr>
<tr>
<td>Señalización productos</td>
<td>$ 240.000</td>
<td></td>
</tr>
<tr>
<td>Servicio</td>
<td>Precio</td>
<td>Tiempo</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Señalización estanterías bodega</td>
<td>$48.000</td>
<td></td>
</tr>
<tr>
<td>Ubicar nuevo organizador de objetos o herramientas</td>
<td>$216.900</td>
<td>1 día</td>
</tr>
<tr>
<td>Archivador</td>
<td>$160.000</td>
<td></td>
</tr>
<tr>
<td>Organizador de llaves y candados</td>
<td>$36.900</td>
<td></td>
</tr>
<tr>
<td>Tablero de corcho</td>
<td>$20.000</td>
<td></td>
</tr>
<tr>
<td>Soporte Bicicleta</td>
<td>$70.000</td>
<td></td>
</tr>
<tr>
<td>Delimitación de áreas y objetos</td>
<td>$120.000</td>
<td>3 días</td>
</tr>
<tr>
<td>Archivador</td>
<td>$160.000</td>
<td></td>
</tr>
<tr>
<td>Organizador de llaves y candados</td>
<td>$36.900</td>
<td></td>
</tr>
<tr>
<td>Tablero de corcho</td>
<td>$20.000</td>
<td></td>
</tr>
<tr>
<td>Soporte Bicicleta</td>
<td>$70.000</td>
<td></td>
</tr>
<tr>
<td>Delimitación de áreas y objetos</td>
<td>$120.000</td>
<td>3 días</td>
</tr>
<tr>
<td>Pintura delimitación</td>
<td>$120.000</td>
<td></td>
</tr>
<tr>
<td>LIMPIEZA</td>
<td>$689.208</td>
<td>14 días</td>
</tr>
<tr>
<td>Limpieza general en planta y almacén</td>
<td>$-</td>
<td>4 días</td>
</tr>
<tr>
<td>Adquisición y ubicación de canecas</td>
<td>$139.300</td>
<td>1 día</td>
</tr>
<tr>
<td>Recipientes de basura</td>
<td>$139.300</td>
<td></td>
</tr>
<tr>
<td>Reubicar utensilios y productos de aseo</td>
<td>$-</td>
<td>1 día</td>
</tr>
<tr>
<td>Instalación de llaves de agua en planta</td>
<td>$220.000</td>
<td>2 días</td>
</tr>
<tr>
<td>Instalación llaves de agua</td>
<td>$220.000</td>
<td></td>
</tr>
<tr>
<td>Instalación de extractor de aire en planta</td>
<td>$229.908</td>
<td>2 días</td>
</tr>
<tr>
<td>Extractor</td>
<td>$229.908</td>
<td></td>
</tr>
<tr>
<td>Arreglo de paredes y pintura en punto de venta</td>
<td>$100.000</td>
<td>2 días</td>
</tr>
<tr>
<td>Arreglo de paredes y pintura</td>
<td>$100.000</td>
<td></td>
</tr>
</tbody>
</table>
Anexo R. Cuestionario Auditoría 5s según implementación de propuesta.

<table>
<thead>
<tr>
<th>5S</th>
<th>#</th>
<th>Tema</th>
<th>Descripción</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Materiales o partes</td>
<td>¿Productos en exceso de inventario?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Maquinaria u otro equipo</td>
<td>¿Hay existencia innecesaria de equipo en un lugar?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Herramientas</td>
<td>¿Existe exceso de herramientas en un lugar de trabajo?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Control visual</td>
<td>¿Existen letreros de señalización y de información?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Estándares escritos</td>
<td>¿Tienen estandarizado algún proceso 5s?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Áreas</td>
<td>¿Las áreas están demarcadas?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Lugares de trabajo</td>
<td>¿Los lugares de trabajo se encuentran demarcados?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Indicadores de cantidad</td>
<td>¿Existe un control de inventario?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Vías de acceso y almacenamiento</td>
<td>¿Están demarcadas con líneas divisorias las áreas de acceso y almacenaje?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Herramientas</td>
<td>¿Poseen un lugar claramente identificado?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Pisos</td>
<td>¿Están los pisos libres de suciedad?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Estanterías</td>
<td>¿Están los estantes visiblemente limpias?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Mantenimiento</td>
<td>¿Existe un plan de limpieza y mantenimiento para los equipos?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Seguimiento de limpieza</td>
<td>¿Hay una persona encargada de verificar la limpieza en el almacén?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Hábito de limpieza</td>
<td>¿Se cuenta con un cronograma de limpieza?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>