ESTABLECIMIENTO DE UN PROYECTO PRODUCTIVO DE 5.000 m² DE FRIJOL CAUPI (Vigna unguiculata) COMO ALTERNATIVA DE PRODUCCIÓN AGRÍCOLA EN DOS LOCALIDADES DE LA REGIÓN CARIBE (BOLIVAR Y SUCRE)

INFORME FINAL DE GRADO

GUSTAVO CASTRO GARCÍA
DIRECTOR TRABAJO DE GRADO

ISABEL DURÁN ARRIETA

UNIVERSIDAD DE LA SALLE
FACULTAD DE CIENCIAS AGROPECUARIA
PROGRAMA DE INGENIERÍA AGRONÓMICA

Yopal, Casanare
2017
DEDICATORIA

A DIOS todo poderoso quien siempre me ha guiada y fortalecido para superar las diferentes etapas de mi vida, a mi madre María Cleofe Arrieta Vergara y mi padre Luis Gabriel Durán Palencia por ser el motor que me motiva cada día por todo su apoyo incondicional brindado por esas sabias palabras que retunde mi mente en todo momento y demás familiares, amigos que estuvieron presente en el recorrido de este arduo camino.

AGRADECIMIENTO

TABLA DE CONTENIDO

1. INTRODUCCIÓN ... 9
2. OBJETIVOS... 11
 2.1. Objetivo General... 11
 2.2. Objetivo específicos.. 11
3. PLANTEAMIENTO DEL PROBLEMA.. 12
4. JUSTIFICACIÓN.. 14
5. LOCALIZACIÓN Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO...................... 15
 5.1. Caracterización Socioeconómica del Sitio del Proyecto ... 17
6. CARACTERIZACIÓN SOCIOECONOMICA DEL SITIO DE IMPACTO........................... 18
7. COMPONENTE DE INGENIERÍA AGRONÓMICA ... 21
 7.1. Material vegetal... 21
 7.2. Requerimientos Edafoclimáticos ... 22
 7.3. Preparación del terreno... 23
 7.4. Plan de manejo de recursos hídricos.. 24
 7.6. Plan de fertilización.. 27
 7.7. Manejo Integrado de Insecto Plagas.. 29
 7.9. Control de Arvenses.. 32
 7.11. Post-cosecha.. 33
 7.12. Cronograma de Actividades.. 34
8. COMPONENTE DE INVESTIGACIÓN.. 35
 8.1. Registro, datos y hallazgos.. 36
 8.3. Resultados... 37
9. Componente de Liderazgo Social, Político y Productivo.. 44
10. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO... 46
ÍNDICE DE TABLAS

Tabla 1. Taxonomía del frijol caupí (*V. unguiculata*) ... 21
Tabla 2. Aspectos botánicos de frijol caupí (*V. unguiculata*) ... 22
Tabla 3. Condiciones Edafoclimáticas .. 22
Tabla 4. Análisis de suelo del lote primer ciclo en el municipio Achí Bolívar 27
Tabla 5. Producto, elementos y método de aplicación del fertilizante foliar 28
Tabla 6. Plagas que se presentaron en el proyecto productivo .. 30
Tabla 7. Moléculas y dosis para el control químico ... 30
Tabla 8. Enfermedades, moléculas y dosis para el control fúngico ... 31
Tabla 9. Clasificación del grano según la norma NTC la norma técnica colombiana 871 2005 de calidad ... 33
Tabla 10. Kilogramos cosechados y clasificación ... 34
Tabla 11. Cronograma de actividades en el cultivo de Frijol caupí (*V. unguiculata*) para el primer y segundo ciclo ... 34
Tabla 12. Área, producción y rendimiento de frijol (*P. vulgaris*) en Colombia 2016-B. 48
Tabla 13. Área, producción y rendimiento de frijol (*P. vulgaris*) en Colombia 2017-A 49
Tabla 14. Resumen financiero del flujo de caja para el primer ciclo ... 54
Tabla 15. Resumen financiero del flujo de caja para el segundo ciclo 54
Tabla 16. Actores y posibles aportes a futuros emprendimiento en el municipio de Achí Bolívar .. 56
Tabla 17. Actores y posibles aliados para continuar con nuevos emprendimientos en el municipio de Majagual Sucre ... 56
ÍNDICE DE FIGURA

Figura 1. Localización Municipio de Achí. Fuente: Google Earth, 2015 ... 15
Figura 2. vías de acceso al sistema productivo de Frijol caupí (V. unguiculata) Para los dos municipios Fuente: Elaboración propia 2017 .. 17
Figura 3. Ubicación del Proyecto en el Departamento de Sucre. Tomado de página web de Majagual sucre, 2017 ... 17
Figura 6. Principales insectos plagas que se presentaron en el cultivo de frijol caupí. (V. unguiculata) Fuente: Elaboración propia, 2017 .. 29
Figura 7. Principal enfermedad en el cultivo. Fuente: Elaboración propia, 2017 .. 31
Figura 9. Altura de las plantas de cada tratamiento en el tiempo. Fuente: Herramienta de software estadístico MINITAB 18; y Elaboración propia (2017) ... 38
Figura 11. Numero de granos por vaina de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; y Elaboración propia 2017). .. 40
Figura 12. Peso promedio de 100 grano de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; Elaboración propia 2017. .. 41
Figura 13. Rendimiento Kg/ha de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; Elaboración propia 2017 .. 42
Figura 14. Mayores productores de frijol (P. vulgaris) del mundo. Fuente: tomada de Fenalce, 2016 .. 47
Figura 15. Mayores departamentos productores de fríjol(P. vulgaris) en Colombia. Fuente: tomado de Fenalce, 2016 .. 50
Figura 16. Producción nacional vs la importación que demanda Colombia. Fuente: tomada de Fenalce, 2016 .. 51
Figura 17. Consumo per cápita de fríjol en Colombia. Fuente: tomada de Fenalce, 2016 51
Figura 18. Canales de comercialización de frijol caupí. (*V. unguiculata*) Fuente: Elaboración propia 2017

Figura 20. Cadena comercial del Frijol caupí (*V. unguiculata*) Elaboración propia, 2017
ANEXOS

ANEXO 1. Limpieza del terreno para el primer ciclo en Achí Bolívar. Fuente: Elaboración propia 2017. .. 63
ANEXO 4. Control de arvenses para el primer y segundo ciclo. Fuente: Elaboración propia, 2017. .. 64
ANEXO 5. Instalación del sistema de riego para el segundo ciclo. Fuente: Elaboración propia, 2017. .. 65
ANEXO 6. primer ciclo. Fuente: Elaboración propia, 2017. ... 65
ANEXO 10. Datos obtenidos de la prueba de Tukey para la variable altura de la planta Fuente: Programa de Minitab, 2017 ... 67
ANEXO 11. Datos obtenidos de la prueba de Tukey para la variable número de vaina por planta Fuente: Programa de Minitab, 2017 .. 68
ANEXO 12. Datos obtenidos de la prueba de Tukey para la variable número de granos por vaina Fuente: Programa de Minitab, 2017 ... 69
ANEXO 13. Datos obtenidos de la prueba de Tukey para la variable peso promedio de 100 grano Fuente: Programa de Minitab, 2017 ... 69
ANEXO 14. Datos obtenidos de la prueba de Tukey para la variable rendimiento kg/ha Fuente: Programa de Minitab, 2017 ... 70
ANEXO 15. Capacitación a estudiantes de la Institución técnica agropecuaria del corregimiento de Puerto Venecia Bolívar .. 71
ANEXO 16. Capacitación a estudiantes de la Institución Educativa San roque del municipio de Majagual Sucre. Fuente: Elaboración propia 2017 .. 71
ANEXO 17. Elaboración de biopreparados, y semilleros de hortalizas. Fuente: Elaboración propia, 2017 ... 72
ANEXO 18. Capacitaciones a agricultores de arroz. De la mano de EPSAGRO. Fuente: Elaboración propia, 2017 ..
1. INTRODUCCIÓN

El frijol (*Phaseolus vulgaris*) es uno de los cultivos más sembrados en el mundo. Según la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación), se produce en 129 países, en donde cerca del 45% de la producción mundial proviene de la región de América Latina, siendo importante para la economía de las comunidades campesinas. A nivel nacional la producción de frijol ha obtenido rendimientos en promedio de 1.1 t/ha. El 58% de la producción proviene de variedades arbustivas y el 42% de las variedades voluble (FAO, 2010).

El consumo promedio per cápita de frijol (*P. vulgaris*) en Colombia es de 2.7 kilogramos por persona, los mayores consumidores están en Antioquia, el eje cafetero, Bogotá, Santander y la Costa Atlántica (Fenalce 2016). Según el DANE para el 2014 la región caribe presentó en promedio 27 ha de frijol caupí (*Vigna unguiculata*), con rendimientos de 800 kg/ha, lo cual muestra
que existe un potencial productivo de este cultivo para esta zona. Sin embargo, existe limitada asesoría técnica para la producción agrícola en este lugar.

Por lo tanto, es necesario establecer proyectos productivos que promuevan el desarrollo económico y social de la región, que permitan generar empleo y alternativas de seguridad alimentaria. Entonces, este proyecto se desarrolló en la región caribe, específicamente en dos comunidades rurales, en donde un primer ciclo se desarrolló en municipio Achí, en el corregimiento de Payandé departamento de Bolívar, y un segundo ciclo de producción en Majagual, vereda Sanco Araña, departamento de Sucre, con los propósitos de promover el crecimiento agrícola de estas zonas.
2. OBJETIOS

2.1. Objetivo General

Establecer un proyecto productivo de 5.000 m2 de frijol caupí (*V. unguiculata*) como alternativa de producción agrícola en dos localidades de la región caribe (Bolívar y Sucre).

2.2. Objetivo específicos

- Establecer mediante un plan manejo técnico el seguimiento agronómico para el proyecto productivo frijol caupí (*V. unguiculata)*.
- Desarrollar una investigación de densidades de siembra evaluando las características morfológicas y de producción.
- Promover con la implementación del proyecto actividades de extensión del manejo del cultivo con propósitos de impacto social y desarrollo rural.
- Identificar canales de comercialización de los productos obtenidos considerando la factibilidad técnico-económica.
3. PLANTEAMIENTO DEL PROBLEMA

El frijol caupí (*V. unguiculata*) es un producto de importancia en la región Caribe, ya que es muy utilizado para las comidas costeñas. La población de Bolívar y Sucre presenta alto consumo en especial para la época de semana santa donde se realizan dulce, arroz (*Oryza sativa*) y mote, lo cual es una época donde se escasea este producto y los comercializadores tiende a elevar los precios (Cardona, Araméndiz y Jarma, 2013).

Teniendo en cuenta que estas zonas tienen potencial para producción del frijol caupí (*V. unguiculata*) por sus condiciones edafoclínicas, y se puede incentivar el uso de tecnologías para incrementar la producción como, por ejemplo: el análisis de suelo, el uso de sistema de riego y utilizar eficientemente los agroquímicos. Según reportes del (DANE 2010), los departamentos de Bolívar y Sucre para el 2014 contaron con área aproximada de 27 ha de frijol caupí (*V. unguiculata*), en donde se ha evidenciado falta de conocimiento del manejo técnico del cultivo. Adicionalmente, en los últimos años la concentración de los cultivos ilegales en la zona, el cultivo arroz (*O. sativa*) y la ganadería extensiva, han reducido localmente el interés por la diversificación de cultivos. Se propone este proyecto productivo para el fomento de tecnología en la producción del frijol, además de establecer los beneficios económicos, sociales y ambientales.
4. JUSTIFICACIÓN

Teniendo en cuenta que la siembra del frijol caupí (*V. unguiculata*) es una alternativa de seguridad alimentaria en los municipios Achí Bolívar y Majagual Sucre, se reconoce que es necesario establecer este tipo de proyecto productivos. Sin embargo, la falta de tecnificación es una de las principales limitantes en la producción agrícola y pecuaria de estos municipios; por lo tanto, el presente trabajo motiva a realizar extensión del conocimiento a todas aquellas personas interesadas en mejorar la producción y calidad de sus cultivos.

La innovación en el cultivo de frijol caupí (*V. unguiculata*) en Achí y Majagual, pretende demostrar la productividad de este cultivo bajo un adecuado manejo agronómico, con miras a que se obtengan rendimientos superiores a los locales, con el propósito que los campesinos puedan obtener mejores ganancias, y por ende mejorar en el desarrollo agrícola, social y economía de la región.
5. LOCALIZACIÓN Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO

El presente proyecto se desarrolló en dos ciclos, cada ciclo en un lugar diferente de la región caribe. El primer ciclo se desarrolló en el departamento de Bolívar, municipio Achí en el corregimiento de Payándé, en este lugar se presentó limitada oferta hídrica, al tener esta situación se decidió realizar un segundo ciclo en Majagual, vereda Sanco Araña, departamento de Sucre.

Según (Gossaín 2012-2015) se encuentra entre 11-50 m.s.n.m, limita al norte con Magangué Bolívar, al sur con San Jacinto del Cauca, al occidente con Majagual Sucre, Guaranda Sucre, al oriente los municipios de Pinillo, Tiquision y Montecristo ver figura 1. El clima es cálido y húmedo con temperaturas media de 27 °C, hace parte de la cuenca del río Cauca Plan (Gossaín 2012-2015).

El lote del proyecto se encuentra localizado a 20,6 km del municipio de Achí Bolívar y a 9,65 km del municipio de Guaranda Sucre, 11 m.s.n.m con temperatura promedio de 27°C, siendo este punto estratégico para la comercialización del producto, estando en Guaranda hay que cruzar el río en canoa para llegar al corregimiento de Puerto Venecia Bolívar y luego llegar al corregimiento de Payandé, se estiman un tiempo de 30 minutos en moto, contando con carretera destapada. El proyecto fue establecido en la finca Manuel Luna propiedad del señor Manuel Acosta Luna, ubicado a las orillas de la quebrada el Guacamayo. El proyecto se realizó en un área equivalente a 5,000 m² de terreno con pendiente con el fin de evitar problemas por inundaciones.

En el segundo ciclo, se estableció el proyecto en el municipio de Majagual Sucre, dónde se concluyó el presente proyecto productivo, vereda Sanco Araña, en la finca El Manguito propiedad del señor Luis Durán Palencia ubicado a 150 m de la carretera. El proyecto se ejecutó en un área equivalente a 5,000 m² de terreno plano. Las condiciones climáticas del municipio son de 2.800 mm por año, temperatura media de 28°C, altitud 20 m.s.n.m, humedad relativa del 87%, brillo solar promedio de 5,39 horas/día según (EDU 2012- 2015). El tiempo estimado del viaje en moto es de 40 minutos desde Majagual, cuenta con carretera pavimentada y destapada ver en la figura 2, en épocas de lluvias se dificulta el tráfico, en esta finca se cuenta con tres fuentes hídricas una es el caño de rabo que esta 25 m de lote, otra es el pozo profundo del cual se extraerá el agua para el riego y otra fuente alterna ubicada a 50 m del lote. En la figura 3 se muestra la ubicación de Majagual Sucre.

5.1. Caracterización Socioeconómica del Sitio del Proyecto

Los municipios de Achí Bolívar y Majagual Sucre, se caracterizan por su vocación agrícola, ganadera, minera y pesquera. La agricultura es el mayor propulsor de la economía del municipio y del corregimiento, donde el 51,4%, de su territorio se emplea en cultivos de yuca (*Manihot esculenta*), maíz (*Zea mays*), arroz (*Oryza sativa*), plátano (*Musa paradisiaca*), aguacate (*Persea americana*), mango (*Mangifera indica*), guayaba (*Psidium guajava*), coco (*Cocos nucifera*), cacao
(Theobroma cacao), ñame (Dioscorea esculenta), caña panelera (Saccharum officinarum), piña (Ananas comosus) y fríjol caupí (V. unguiculata) siendo el arroz el cultivo de mayor interés económico de la región Plan según reportes de (Gossaín 2012-2015) y (EDU 2012-2015).

6. CARACTERIZACIÓN SOCIOECONOMICA DEL SITIO DE IMPACTO

Achí Bolívar, es un municipio que cuenta con uno de los ríos más importantes de Colombia, el cual es el río el Cauca. Este río es la fuente de abastecimiento de agua de muchos corregimientos del municipio de Guaranda, Majagual, Sucre y el mismo Achí, además de ser la vía más corta de comercio entre los municipios de Magangué, Montecristo, Pinillo entre otros.

Según (Gossaín 2012-2015), el municipio está básicamente dedicado al sector agrícola, este cuenta con una extensión territorial de 1.025 km² de los cuales hay superficie agrícola de 11.503 ha, el arroz (O. sativa), es la base de la economía del municipio el 78% de la superficie cultivada es destinada a este alimento, en segundo producto más importante es el maíz (Z. mays) ocupa el 21% de las tierras.

Según las estadísticas del Boletín DANE del (2010) la población total del Municipio de Majagual es de 32.231 personas, de las cuales el 35,2% residen en el casco urbano, con diferencia para el 2015 que estuvo un crecimiento poblacional de 38.634 habitantes que residen en el casco urbano el 36,1 % (14.230) mientras que el 64,1% (24.404) personas habitan en el ámbito rural, el 4,2% de la población es discapacitados los más afectos son los niño y niñas de 0 a 5 año, los habitantes desplazado ocupan 3,8% de la población. Según (EDU 2012-2015).

Entre los actores institucionales en Majagual, se encuentra algunas organizaciones del estado como la UMATA (unidad Municipal de Asistencia Técnica Agropecuaria), la cual cumple la función de asesorar a los productores agrícolas y agropecuarios, Banco Agrario, EPSAGRO
Las condiciones socioeconómicas para el municipio de Majagual, medidas por Índice de Necesidades Básicas Insatisfecha – NB, presenta valores de 54,54% para la población que moran en la cabecera urbana y de 82,35% para los que viven en ámbito rural indicando que las necesidades son de mayor magnitud, esto quiere decir que el 82,35% de los hogares rurales presenta problemas en vivienda digna, alta dependencia económica del jefe de hogar con bajo niveles de estudios (EDU 2012-2015) y (MADR 2014).

En cuanto a la vocación del suelo Majagual es una zona enfocada a la producción agropecuaria y ganadera, donde los principales productos agrícolas establecido son el arroz en are de 7,000 ha, el (Z. mays), la caña de azúcar (Saccharum officinarum) se siembra en área de 500 ha y como cultivo promisorio la sandía (Citrullus lanatus) y el cacao(T. cacao). En cuanto a la ganadería vacuna, se cuenta 38,367 cabezas en 554 fincas, es una actividad económica relevante, puesto que es de doble propósito, presentado bajo aprovechamiento del suelo ganadero ya que se hace de forma extensiva. Según (EDU 2012-2015).

Por otro lado la producción agrícola y ganadera en los municipio Achi Bolivar y Majagual Sucre se encuentra afectada por los cambios climáticos, donde todos los años las inundaciones arrasan miles de hectáreas de productos agrícolas destinados a la comercialización y el pasto para el engorde del ganado, además no hay infraestructuras y capacitaciones técnicas, las actividades se ejecutan de manera empírica, y se cuentan con vías de transporte internas adecuadas para acceder a los mercados regionales (Gossaín 2012-2015) y (EDU 2012-2015).
7. COMPONENTE DE INGENIERÍA AGRONÓMICA

7.1. Material vegetal

El frijol caupí es el prototipo del género *Vigna*, es una planta angiosperma perteneciente a la familia fabácea, esta se clasifica como (*Vigna unguiculata*) (CIAT. 1985) (Centro Internacional de Agricultura Tropical). La tabla 1 muestra la taxonomía del frijol caupí y la Tabla 2 los aspectos botánicos. La semilla utilizada para la siembra fue certificada.

Tabla 1. Taxonomía del frijol caupí

<table>
<thead>
<tr>
<th>Taxonomía del frijol caupí (V. unguiculata)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reino</td>
</tr>
<tr>
<td>Clase</td>
</tr>
<tr>
<td>Subclase</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Familia</td>
</tr>
<tr>
<td>Género</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>Nombre científico</td>
</tr>
<tr>
<td>Nombre común</td>
</tr>
</tbody>
</table>

Tabla 2. Aspectos botánicos de frijol caupí (*V. unguiculata*)

<table>
<thead>
<tr>
<th>Aspectos botánico</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raíz</td>
<td>Presenta raíces profunda y pivotante que alcanza longitud de 1.40m, en sus raíces crecen nódulos, que son protuberancias donde viven las bacterias del género Rhizobium son las encargadas de fijar el nitrógeno del aire y las plantas lo utilizan para su nutrición.</td>
</tr>
<tr>
<td>Tallo y ramas</td>
<td>Los tallos y las ramas presentan una forma cilíndrica con ligeros bordes, algunas veces son glabros (sin pubescencia) y huecos, presentan diferente coloración de acuerdo a la especie. El número de entrenudos y guías o ramas laterales es variado y en los tipos indeterminados al crecer las ramas laterales tienden a enrollarse y entrelazarse. La ramificación se origina en la parte basal del tallo y comienza a los 15 o 20 días después de la emergencia. La planta presenta diferentes hábitos de crecimiento.</td>
</tr>
<tr>
<td>Hoja</td>
<td>Presenta hoja primaria o embriones que son unifoliadas la forma de los foliolos pueden ser lineal, lanceolada o ovalada. El área foliar se incrementa con la edad de la planta formado hojas verdaderas trifoliadas.</td>
</tr>
<tr>
<td>Inflorescencia y flor</td>
<td>El primer tallo floral se origina en la axila entre las hojas y el tallo, son pequeños racimos formada por cinco de colores blanca con manchas morado, presenta cinco pétalos que reciben el nombre de estandarte, dos alas y dos pétalos soldados que forman la quilla, las son hermafrodita preferentemente autogamas, pero existen un 5% de polinización cruzada por insectos.</td>
</tr>
<tr>
<td>Fruto</td>
<td>Es una vaina lineal o encorvada que alcanza un tamaño de 10 a 25cm de longitud y de 1.5 a 3.2 cm de diámetro, contiene de 6 a 21 grano por vaina.</td>
</tr>
</tbody>
</table>

Fuente: (Albán 2012; Arisa y Restrepo 2007; Rengifo Martínez T. y Jaramillo 2007).

7.2. Requerimientos edafoclimáticos

En la tabla 3 se muestra las condiciones edafoclimáticas del municipio de Achí Bolívar y Majagual Sucre, también para el frijol caupí (*V. unguiculata*).

Tabla 3. Condiciones edafoclimáticas

<table>
<thead>
<tr>
<th>Sitio/especie</th>
<th>Achí Bolívar</th>
<th>Majagual Sucre</th>
<th>frijol caupí (V. unguiculata)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Suelo</th>
<th>Franco arcilloso</th>
<th>Franco arcilloso</th>
<th>Franco limoso y franco arcilloso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>6 a 7</td>
<td>5-7</td>
<td>5.5 a 6.5</td>
</tr>
<tr>
<td>Temperatura</td>
<td>27°C</td>
<td>27-30°C</td>
<td>28-30°C</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>85%</td>
<td>85%</td>
<td>75-85%</td>
</tr>
<tr>
<td>Altitud</td>
<td>11 a 50 m.s.n.m</td>
<td>20 m.s.n.m</td>
<td>0-1000 m.s.n.m</td>
</tr>
<tr>
<td>Luminosidad</td>
<td>10 horas días</td>
<td>6-10</td>
<td>8-14</td>
</tr>
<tr>
<td>Precipitación</td>
<td>1200-1500mm/annual</td>
<td>2.800 mm/annual</td>
<td>300-500 mm/annual</td>
</tr>
</tbody>
</table>

Fuente: (Tomado de Albán, 2012; Arias y Restrepo 2007; Gossaín 2012-2015 y EDU 2012-2015).

7.3. Preparación del terreno

El terreno del lote ubicado en el municipio de Achí fue escarpado, con una pendiente aproximada del 20%, con una altura de 80 m.s.n.m. Inicialmente se delimitó el lote con un GPS (Sistema de posicionamiento global), se realizó la limpieza del terreno manual por medio del machete (Anexo 1), posteriormente se dejó secar el material vegetal, este era un lote que no tenía uso agrícola desde hace 3 años. Para el segundo ciclo en el municipio de Majagual Sucre, el lote fue plano, a una altura de 20 m.s.n.m, la delimitación del lote se realizó con un GPS, seguido se realizó el cercado del lote con polonés de madera cada uno a 2m de distancia (Anexo 2). Este terreno históricamente se había utilizado para el cultivo de arroz (*O. sativa*), y la ganadería, la preparación del terreno fue con un tractor, utilizando cuatro pases de rastra (Anexo 3). En la ejecución de los dos ciclos del proyecto productivo se realizó antes de la siembra la aplicación de un herbicida post-emergente con glifosato a razón de 100 ml del producto por bomba de 20 litros de agua (Anexo 4).
7.4. Plan de manejo de recursos hídricos

Los requerimientos hídricos del cultivo de frijol caupí (*V. unguiculata*) dependen de la etapa fenológica. Investigaciones realizadas demuestran que el consumo de agua del frijol es mayor en las etapas de floración y de formación de la vaina (Ríos, 2000), citado por (Arias y Restrepo 2007).

El frijol (*V. unguiculata*) es una planta que no tolera la escasez ni el exceso de agua (Ríos, 2002; Arias, 2001; Rivera, 1992 y Tamayo, 2006). Durante el desarrollo del primer ciclo - en el municipio de Achí Bolívar - se presentaron condiciones adecuadas de clima y lluvia para el establecimiento del cultivo, a pesar de ello, al final de este ciclo se presentó una fuerte escasez de agua, lo que conllevó a definir el desarrollo del segundo ciclo en otro lugar.

El segundo ciclo fue desarrollado en el municipio de Majagual Sucre, en este lugar fue necesario establecer un sistema de riego, como fuente hídrica se utilizó un pozo profundo, el sistema contó con una motobomba de 2,5 hp, la distancia de la bomba al lote fue de 100 m, como conducción se utilizó una manguera de 1 ½”, que se conectó con micro aspersores (ver esquema del sistema de riego en Anexo 5).

Según aforo realizado en la finca El Manguito para cubrir 5.000 m² se necesitaban aproximadamente 21.600 litros (4.2 l/m²), sin embargo, el pozo contaba con una capacidad 7.200 litros, lo que fue necesario dividir el lote en tres secciones, estableciendo unas rotaciones para riego, teniendo en cuenta que se necesitaba esperar a que el pozo se recupera. A pesar de los esfuerzos por implementar el riego, al final del ciclo se presentaron inesperadas lluvias, ocasionando pérdidas del cultivo. Generalmente, las lluvias que se presentan en el mes de junio son pocas o nulas. A continuación, se muestran gráficos de lluvia de la zona de estudio y durante el periodo del proyecto.
Figura 4. Precipitaciones en Majagual Sucre para los primeros meses del 2017. Fuente FEDEARROZ.

En la figura anterior se muestra las precipitaciones para los primeros meses del 2017 donde se identifica que para el mes de marzo se presentaron lluvias de los 439,1mm, con relación a años atrás para este mes se las precipitaciones eran pocas de 32mm ver figura 5.

7.5. Siembra

La actividad de siembra se inició a los siete días después de la aplicación del herbicida post-emergente. En el primer ciclo se realizó la siembra en hileras, con distancia de 0,30 m entre planta y 0,80 m entre surcos, se utilizó un punzón para la siembra, disponiendo de 2 semillas por sitio, se establecieron curvas a nivel para el trazado del cultivo, el mecanismo de siembra que se uso fue de siembra directa con labranza cero, ya que se sembró en una zona de pendiente, se utilizaron 15 kg de semilla, para un total 20.833 planta Anexo 6.

La implementación del segundo ciclo se realizó en el municipio de Majagual Sucre, para este se dispuso un área de 5000m², de los cuales se sembraron 3.500m², en el trascurso de la siembra se presentaron fuertes lluvias que ocasiono perdida de semillas, las lluvias cesaron unos
días donde germino 1.400m² pero después continuaron las lluvias inundando el lote por segunda vez motivo que impidiendo continuar con el segundo ciclo.

7.6. Plan de fertilización

Inicialmente se realizó el análisis de suelo, en la tabla 4 se muestra los resultados del análisis de suelo del lote del primer ciclo ubicado en el municipio Achí Bolívar, cabe anotar que para el segundo ciclo no se realizó análisis de suelo y se consideró el mismo plan de fertilización para el seguimiento de la producción.

Tabla 4. Análisis de suelo del lote primer ciclo en el municipio Achí Bolívar

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>0,12%</td>
<td>Bajo</td>
</tr>
<tr>
<td>Fosforo</td>
<td>4,37 ppm</td>
<td>Bajo</td>
</tr>
<tr>
<td>Potasio</td>
<td>0,12 meq/100g</td>
<td>Bajo</td>
</tr>
<tr>
<td>Magnesio</td>
<td>8,29 meq/100g</td>
<td>Alto</td>
</tr>
<tr>
<td>Calcio</td>
<td>9,38 meq/100g</td>
<td>Alto</td>
</tr>
<tr>
<td>Aluminio</td>
<td>#N/A</td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td>0,29 meq/100g</td>
<td>Medio</td>
</tr>
<tr>
<td>Azufre</td>
<td>4,27 ppm</td>
<td>Bajo</td>
</tr>
<tr>
<td>Hierro</td>
<td>29,55 ppm</td>
<td>Medio</td>
</tr>
<tr>
<td>Boro</td>
<td>0,08 ppm</td>
<td>Bajo</td>
</tr>
<tr>
<td>Cobre</td>
<td>3,40 ppm</td>
<td>Medio</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Manganeso</td>
<td>8,27 ppm</td>
<td>Bajo</td>
</tr>
<tr>
<td>Zinc</td>
<td>1,26 ppm</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

fuente: (Agrosoillab 20015).

Se utilizaron los requerimientos de fertilización para suplir las necesidades de la especie, los valores de extracción considerados fueron para nitrógeno 105 kg/ha, Fosforo 10 kg/ha, Potasio 120 kg/ha, Calcio 70 kg/ha, Magnesio 6 kg/ha y Azufre 10 kg/ha (Albán, 2012). Según los cálculos se estimaron 75 kg de Urea, 50 kg de KCl, 15 kg de DAP, para suplir las necesidades de menores se realizó con foliares. Se estimaron 10,5 g/planta de mezcla de fertilizante. La fertilización se fraccionó en dos partes, la primera el día de la siembra (50%) y la segunda a los 15 días después de la siembra (50%). Las consideraciones de la fertilización foliar se pueden ver en la tabla 5, se realizó la calibración de los equipos de aplicación siguiendo la metodología de (Noboa, Calle 2014) este consistía en medir cuantas plantas pueden ser asperjadas con una fumigadora de espalda de 20 L, con base a ello definir la dosis de producto.

Tabla 5. producto, elementos y método de aplicación del fertilizante foliar

<table>
<thead>
<tr>
<th>Producto</th>
<th>Elemento</th>
<th>Métodos de aplicación</th>
<th>Nº de aplicación</th>
<th>Dosis por bomba</th>
<th>Etapa fenológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wuxal</td>
<td>N,P, K, Cu,Fe,</td>
<td>Foliar</td>
<td>4</td>
<td>30ml</td>
<td>Prefloración y floración</td>
</tr>
<tr>
<td>CA</td>
<td>Mn, Mo, Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (Elaboración propia 2017).
7.7. Manejo Integrado de Insecto Plagas

Se identificaron insectos plagas como el Gusano tierrero (*Agrotis ipsilon*), Gusano Falso medidor (*Trichoplusia ni*), Gusano terciopelo (*Anticarsia gemmatalis*), Gusano cogollero (*Spodoptera eridania*), Saltamontes o chapulín (*Brachystola magna*), en la figura 6 se puede observar imágenes de los insectos encontrados. La tabla 6 muestra métodos de control para las plagas encontradas. Para la elaboración de Ajo (*Allium sativum*), Ají (*Capsicum annuum*), Cebolla (*Allium cepa*) y Albahaca (*Ocimum basilicum*) de este se usan las hojas y flores, se utilizó un kilo de cada producto anteriormente mencionado se maceraron bien y se coló en un recipiente con 10 litros de agua durante 48 horas, para su uso se realizó el tamiza y se le agrega 20 g de jabón rey ya disuelto, para su aplicación se disuelve 1 litro del insecticida o repelente en 20 litro de agua para controlar los insectos plagas presente en cultivo (Salazar, 2010). Los monitoreos se realizaron sistemático en forma de zig-zag y en forma de X, se identificaron focos de infestación y se controlaron.

![Figura 6. Principales insectos plagas que se presentaron en el cultivo de frijol caupí. Fuente: Elaboración propia, 2017.](image-url)
Tabla 6. Plagas que se presentaron en el proyecto productivo

<table>
<thead>
<tr>
<th>Insecto</th>
<th>C Químico</th>
<th>C Mecánico</th>
<th>C Biológico</th>
<th>Etapa fenológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gusano tierrero</td>
<td>Fipronil</td>
<td></td>
<td>Ajo + Ají</td>
<td>V4</td>
</tr>
<tr>
<td>Gusano Falso medidor</td>
<td>Engeo</td>
<td>Trampas de caída</td>
<td></td>
<td>R5</td>
</tr>
<tr>
<td>Gusano terciopelo</td>
<td>Clorpirifos</td>
<td>Trampas de caída</td>
<td>Ajo + Cebolla + Albahaca</td>
<td>R7—R8</td>
</tr>
<tr>
<td>Gusano cogollero</td>
<td>Roxion</td>
<td>Trampas de caída</td>
<td>Ajo + Cebolla + Albahaca</td>
<td>R9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, 2017.

Tabla 7. Moléculas y dosis para el control químico

<table>
<thead>
<tr>
<th>Producto</th>
<th>Molécula activa</th>
<th>Dosis por litro de agua</th>
<th>Grupo</th>
<th>Categoría toxicológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fipronil</td>
<td>Fipronil</td>
<td>1,25 ml/L</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Engeo</td>
<td>Lambdacialotrim + Thiamethozan</td>
<td>2,5ml/L</td>
<td>Neocotinoide,</td>
<td>II</td>
</tr>
<tr>
<td>LorsbanTM</td>
<td>Clorpirifos</td>
<td>1,5ml/L</td>
<td>Organofosforados</td>
<td>III</td>
</tr>
<tr>
<td>Roxion</td>
<td>Dimetoato</td>
<td>2,0ml/L</td>
<td>Organofosforados</td>
<td>II</td>
</tr>
</tbody>
</table>
7.8. Control de Enfermedades

La figura 7 muestra la evidencia según la sintomatología de la presencia de pudrición de raíz o mal del talluelo, *Rhizoctonia solani* en la figura 7a se observa planta de frijol caupí (*V. unguiculata*) con bajo desarrollo radicular 7b se observa marchitamiento y amarillamiento de la planta en ultima figura 7c se mira la descomposición acuosa del tallo. La Tabla 8 muestra los insumos utilizados para el control de enfermedades.

![Figura 7](image)

Figura 7. Principal enfermedad en el cultivo. Fuente: Elaboración propia, 2017.

Tabla 8. Enfermedades, moléculas y dosis para el control fúngico

<table>
<thead>
<tr>
<th>Enfermedades</th>
<th>Productos</th>
<th>Molécula activa</th>
<th>Dosis por litros de agua</th>
<th>Grupo</th>
<th>Categoría toxicológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mal del talluelo (Rhizoctonia solani),</td>
<td>Carbendazim</td>
<td>Carbendazim-Methyl N</td>
<td>2,0 ml/L</td>
<td>Benzimidazol</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Topgun</td>
<td>(Azoxytrobin + Tridemorph)</td>
<td>2,25ml/L</td>
<td>Estrobilurinas</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Oxicloruro de cobre</td>
<td>Oxicloruro de cobre</td>
<td>4g/L</td>
<td></td>
<td>III</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, 2017.
7.9. Control de Arvenses

Se realizó el control de arvenses el primer mes y antes de la floración. La figura 8 muestra las malezas identificadas. Se presentaron arvenses como Falsa Caminadora (*Ischaemun rugosum*), Liendre puerco (*Echinochloa colomum*), gramo (*Cynodon dactylon*) también hay maleza de la familia Amarantáceas siempre viva (*Gomphrena pulchella*). Se realizó control manual, de igual forma se realizó un control químico con glifosato en dosis de 5 ml/L, durante el desarrollo del cultivo se realizaron 2 controles. ver Anexo 7.

![Figura 8. Principales Maleza en el cultivo de frijol. Fuente: Elaboración propia 2017.](image)

7.10. Cosecha

La cosecha se realiza en tres fases arranque, enchorizado y trilla, e inicia al presentarse la madurez fisiológica de la planta (Albán, 2012). La cosecha para este proyecto se realizó en el primer ciclo en el municipio de Achí Bolívar después de 66 días de siembra, considerando el color de las vainas que pasan de verde a amarillo uniforme o pigmentado, en total se cosechó 682.4 kilogramos en toda el área. Para el segundo ciclo del proyecto no se realizó cosecha ya que este estuvo una duración de 15 día llegando a su etapa vegetativa dos.
7.11. Post-cosecha

Se recolectaron las plantas con vainas secas, seguido se realizó el proceso de trillado, luego el secado del grano y finalmente se seleccionó grano según la (NTC 871 2005) (ver tabla 9). Para el secado del frijol caupí (*V. unguiculata*) se adecuó un secador con plástico traspante, la duración del secado fue de 3 días (ver Anexo 8), la trilla se realizó de forma manual con golpes desprendiendo los granos de la vaina, están se depositaron en un saco de lona para evitar pérdidas. También se realizó la ventilación con el propósito de eliminar los residuos vegetales que pueden contaminar el grano. De igual forma se realizó la preselección del grano que consistía en seleccionar los granos por calidad para este ciclo según la (NTC 871 2005). La tabla 10 muestra los kilogramos cosechados según clasificación.

Para empacar el frijol caupí (*V. unguiculata*) se utilizaron sacos de lona en bultos de 50 kilos, los empaques se ubicaron sobre estibas de maderas para evitar el contacto con el suelo y paredes, esto con el propósito de evitar deterioro de los sacos. Así mismo, se utilizaron hoja de eucalipto y amamú para prevenir la presencia de insectos plagas.

Tabla 9. Clasificación del grano según la norma NTC la norma técnica colombiana 871 2005 de calidad

<table>
<thead>
<tr>
<th>Calidad primera</th>
<th>Calidad de segunda</th>
<th>Calidad de tercera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquellos granos que no están manchado ni partidos</td>
<td>Son granos que le falta (\frac{1}{4}) o más de su tamaño con 75% manchado</td>
<td>Son aquellos granos partidos, manchados no tiene comercialización</td>
</tr>
</tbody>
</table>

Tabla 10. Kilogramos cosechados y clasificación

<table>
<thead>
<tr>
<th>Calidad primera</th>
<th>Calidad de segunda</th>
<th>Calidad de tercera</th>
</tr>
</thead>
<tbody>
<tr>
<td>532.4 kilogramos</td>
<td>100 kilogramos</td>
<td>50 kilogramos</td>
</tr>
</tbody>
</table>

7.12. Cronograma de Actividades

A continuación, se muestra en la tabla 11 las actividades realizada durante la ejecución del proyecto productivo de frijol caupí (*V. unguiculata*).

Tabla 11. Cronograma de actividades en el cultivo de Frijol caupí (*V. unguiculata*) para el primer y segundo ciclo

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tecnología</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividades preliminares</td>
<td>Análisis Físicoquímico</td>
<td>Septiembre-2015</td>
</tr>
<tr>
<td>Preparación del terreno</td>
<td>Compra de insumo y herramienta</td>
<td>Agosto-2016</td>
</tr>
<tr>
<td></td>
<td>Limpieza del terreno (Mecanización con rastra de disco para el segundo ciclo)</td>
<td>Julio-2016</td>
</tr>
<tr>
<td></td>
<td>Hilar el terreno</td>
<td>Enero-2017</td>
</tr>
<tr>
<td></td>
<td>Implementación de riego</td>
<td>Agosto-2016</td>
</tr>
<tr>
<td></td>
<td>Instalación del sistema de riego por aspersión</td>
<td>Febrero-2017</td>
</tr>
<tr>
<td>Asesorías Técnica</td>
<td>Charlas técnica</td>
<td>Junio-2016</td>
</tr>
<tr>
<td></td>
<td>Día de campo</td>
<td>Agosto-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enero- Marzo-2017</td>
</tr>
<tr>
<td>Fertilización</td>
<td>Aplicación de fertilizante edáfico</td>
<td>Agosto-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marzo-2017</td>
</tr>
<tr>
<td>Actividad</td>
<td>Herramienta</td>
<td>Fecha</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Control de arvenses</td>
<td>Herramienta manual básica</td>
<td>Agosto-Septiembre-2016</td>
</tr>
<tr>
<td>Control de plagas</td>
<td>Monitoreos</td>
<td>Agosto-Octubre-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Septiembre-2016</td>
</tr>
<tr>
<td>Fertilización</td>
<td>Aplicación de fertilizante edáfico</td>
<td>Septiembre-2016</td>
</tr>
<tr>
<td>Control de plagas</td>
<td>Aplicación de insecticidas con bomba de espalda</td>
<td>Septiembre-Octubre 2016</td>
</tr>
<tr>
<td>Control de enfermedades</td>
<td>Aplicación de fungicida con bomba de espalda</td>
<td>Septiembre-2016</td>
</tr>
<tr>
<td>Fertilización foliar</td>
<td>Aplicación foliar con bomba de espalda</td>
<td>Septiembre-2016</td>
</tr>
<tr>
<td>Cosecha</td>
<td>Arranque de las plantas de forma manual</td>
<td>Octubre-2016</td>
</tr>
<tr>
<td>Trasporte de cosecha</td>
<td>Trasporte por personas, canoa, tractor, canoa, camión de carga directo a la bodega de almacenamiento</td>
<td>Noviembre-2016</td>
</tr>
<tr>
<td>Venta</td>
<td>Frijol seco a tiendas, súper mercados y graneros del municipio, veredas aledañas</td>
<td>Enero-2017</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, 2017.

8. COMPONENTE DE INVESTIGACIÓN

El objetivo de la investigación fue evaluar el efecto de densidades de siembra en las características morfológicas y de producción de frijol caupí (*V. unguiculata*) en las condiciones de Majagual, Sucre.
8.1. Registro, datos y hallazgos

La investigación se realizó en el departamento de Sucre, municipio de Majagual, vereda Sanco Araña, en la finca El Manguito, la cual presenta temperatura promedio de 27°C y una altura sobre el nivel del mar de 20 m.s.n.m según (EDU 2012-2015).

Según (Boschini et al., 2000), el uso de menores densidades de plantas por área genera mayor altura. Según los reportes de literatura por (Haknsson 1998), el número de vainas por planta disminuye conforme se aumenta la densidad de siembra, pero (Díaz y Aguilar 1984), afirma que el frijol caupí (V. unguiculata) sembrado a menor densidad presenta un número mayor de vaina por planta, ocasionado por un posible mayor número de ramas. También (Cárdenas, F. 1962) reporta que a mayor densidad de siembra o población de plantas favorecen al incremento de plagas y enfermedades, disminuyen el número de vainas por planta y el número de granos por vaina.

8.2. Metodología

Para la ejecución del ensayo de investigación se realizó la delimitación y preparación de lote, se establecieron cuatro tratamientos de densidades de siembra, T1: 0,3 m x 0,6 m; T2: 0,25 m x 0,4 m; T3: 0,2 m x 1 m; T4: testigo 0,3 m x 0,8 m. Se realizó un diseño completamente aleatorizado - DCA. Se utilizaron tres repeticiones por tratamiento. Es bueno aclara que cada tratamiento tiene diferentes números de plantas, para el tratamiento T1 costa de 111 plantas, el T2 200 plantas, el T3 100 plantas y T4 que es el testigo tiene un total 83 plantas.

Las variables de respuesta fueron altura de la planta, donde se eligieron 10 plantas al azar, las variables de respuesta fueron el número de vainas por planta, número de granos por vaina, peso
de 100 granos y la producción final por cada tratamiento en kg/ha. Se realizó el ANOVA con la prueba Tukey con un nivel de significancia de 0.05. Se utilizó el software estadístico MINITAB. El manejo agronómico de los tratamientos fue el mismo. Al final del ciclo de producción se realizaron las demás tomas de datos en cada tratamiento, utilizando herramientas como reglas, libretas, esfero y una balanza digital, las actividades agronómicas desarrolladas fueron las misma para todos los tratamientos.

8.3. Resultados

Realizando un análisis de la figura 9, se logró identificar que el crecimiento en cm del T4 es mayor con respecto a los demás, lo que indica que el uso de diferentes densidades tiene influencia sobre el crecimiento de las plantas de frijol (V. unguiculata). Para determinar si estos tratamientos tuvieron diferencia significativa se realizó el análisis de varianza, cuya fórmula dice que F es mayor que P hay diferencia significativa en los tratamientos el nivel de significancia es de 0,05 ver Anexo 9 por lo que se procede a utilizar el método estadístico de la prueba de Tukey con un nivel de confía del 95% ver Anexo 10, según lo arrojado por la prueba de Tukey y los reportes de literaturas por (Bourin et al 2002) hay diferencia estadísticas entre las distancias evaluadas, la expresión de altura de la planta se le atribuyen a factores ambientales, (Fenalce 2006), dice que la altura de las plantas arbustivas esta comprende de 20- 60 cm estando los tratamiento estudiados dentro del rango confirmado por (Binder, 1997).

De igual forma se realizó en análisis de varianza con un nivel de significación de 0,05 y la prueba de Tukey que indica que hay diferencia estadísticamente significativa en cada tratamiento evaluado ver Anexo 11, lo anterior se debe a que el incremento del número de planta por unidad de área produjo una reducción del número de vainas por planta lo cual se evidencia en el T4 menor número de planta por área mayor número de vaina, por lo cual si tiene en cuenta que mayor densidades hay mayor competencia por luz y nutrientes que afectaron la expresión de la variable. Lo anterior concuerda con (Gonzáles y Ligarreto 2006), quienes afirma que el número de vainas es susceptible a la densidad de población del cultivo, ya que se presenta competencia intraespecífica, de manera que a mayor densidad habrá menor producción por planta, de igual manera los resultados de esta investigación confirman lo expuesto por (Mera 1989), quien encontró que las densidades poblacionales están altamente correlacionadas con la variable número de vainas.
por planta, teniendo un valor negativo, es decir que al aumentar la densidad el número de plantas por área disminuye en NVP ver figura 10.

![Figura 10](image_url)

Figura 10. Número de vainas por plantas de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; y Elaboración propia (2017).

En cuanto a la variable número de grano por vaina se puede ver en la figura 11 que a mayor densidad se observa una ligera tendencia a reducir el número de granos por vaina. Para determinar si hay diferencias estadísticas se realizó la prueba de Tukey ver Anexo 12, se observa que existen diferencias estadísticas entre los T4-T2 ensayo realizado por (Páez et al 2000), arrojaron que la menor producción de grano se da por competencias de nutrientes, espacio y radiación, generado por el más alto número planta por unidad de área, teniendo en cuenta lo que dice (Páez et al 2000) y los resultados obtenidos en esta investigación se podría decir que es afirmativo ya que el T2 es de mayor número de planta por unidad de área y menor número de granos por vaina, se confirma los resultados obtenidos por (Mera 1989), quien afirma que al
aumentar la densidad en cultivo de arveja hay una marcada reducción en el número de vaina por planta y grano por vaina. Además, esto es corroborado por (Gritton y Eastin 1968), quienes encontraron que la producción de vaina por planta y número de granos por vaina disminuye a medida que la población aumenta.

![Diagrama de barras mostrando el número de granos por vaina para diferentes tratamientos.](attachment://diagrama.png)

Figura 11. Número de granos por vaina de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; y Elaboración propia 2017).

En la figura 12 se puede ver el promedio de 100 grano, se observa que los tratamientos T4 de 41666 siendo este el de menor población obtuvo los mejores resultados con el peso de 24,64 g superando significativamente las demás densidades corroborado por los resultados obtenidos de la prueba de Tukey ver Anexo 13, (Montezuma y Ruiz 1974), afirman que el aumento en la densidad de siembra trae como consecuencia la disminución en el peso de los granos; lo cual sucedió en esta investigación con el T2 que tiene 100.000 planta por unidad de are teniendo el peso en promedio de 11,6 g, resultados similares fueron encontrados por (Mera 1989), quien determino que el peso del grano estuvo inversamente correlacionado con densidades poblacionales altas. (Forero y
Ligarreto 2009), afirman que al disminuir las densidades poblacionales el peso de las semillas se incrementa, debido a que menor competencia intraespecífica por la toma de nutrientes y mayor aireación favorece el desarrollo fisiológico y reproductivo de las plantas y mayor peso de grano, al existir mayor fotosíntesis y translocación de asimilados a las estructuras reproductivas también hay menor afectación por enfermedades.

El rendimiento de kg/ha para estos tratamientos se ver en la figura 13 que el T4 siendo este el de menor densidad de planta por área presenta mayor producción con relación a los de más tratamientos, para determinar si hay alguna diferencia estadística entre tratamiento se realiza la prueba de Tukey ver Anexo 14, no presentan diferencias significativamente entre tratamiento, pero si hay correlación entre T4 con rendimiento promedio de 1.500kg/ha fue superior al T1 que presento rendimiento de 1.000kg/ha con respecto a los demás se podría decir que a menor densidad de planta por área mayor producción, se confirma con los reportes de (Tapia 1981), que indican
que a menor densidad de siembra la producción aumenta y se confirma con los reportes de (Binder 1987), que indica que a menor población mayor producción ya que no se presenta competencias entre las plantas, a diferencia de los reportes por (Hakansson 1983), que indica que al aumentar la densidad de siembra aumenta el rendimiento, hasta un punto después del cual el rendimiento se reduce.

![Diagrama de barras con los rendimientos de cada tratamiento]

Figura 13. Rendimiento Kg/ha de cada tratamiento. Fuente: Herramienta de software estadístico MINITAB 18; Elaboración propia 2017.

Según los reportes de literaturas y lo resultados obtenidos de la presente investigación se puede decir que el tratamiento que mejor comportamiento presento para las condiciones del municipio de Majagual departamento de Sucre es T4 con densidades de siembra de 0,3m*0,8m con una población de platas por unidad de área de 41666 p/ha en cuanto a las variables evaluadas como altura de las plantas en cm, número de vainas por plantas, número de grano por vaina, el peso de 100 grano y el rendimiento total por cada tratamiento.
Para la variable de altura se identificó que el tratamiento que mayor altura fue el T4 con promedio de 48,145 cm siendo este el de mayor altura seguido del T3 con 40,095 cm, T1 38, 79 cm por último el T2 que obtuvo menor altura 25,77 cm, tomado en cuenta los resultados obtenidos por (Binder 1997), quien afirma que el frijol caupí (V. unguiculata) arbustivo alcanza una altura de que va de 20 – 60 cm, los resultados obtenidos en esta investigación está dentro del rango presentado por el autor.

En cuanto al número de vainas por planta se puede ver que el T4 presentó el mayor número de vaina por planta de 47 vainas en promedio por plantas, seguido por el T1 con 27,1, con el T3 24,8 y por último el T2 que obtuvo menor número de vaina con 20,2. En cuanto a lo que reporta (Cardenas, 1992), se aplica en la presente investigación con las variables número de vaina por planta, se le atribuye ya que T4 no tiene competencia por luz y nutrientes que puedan afectar la expresión de esta variable, a diferencia de los de más tratamiento ya que si tiene mayor número de planta por área tendrá más competencia entre sí por luz y nutrientes, viéndose reflejado en la producción de vainas por plantas.

Otra de las variables evaluadas es el número grano pro vaina se evidencia que el T4 presenta 17,7 grano, seguido del T3 con 15,1 T1 14 y por último el T2 con 10,6 que presentó el menor número de grano, Según reportes de literatura por (Tapia, 1984), dice que una vaina de frijol caupí (V. unguiculata) tiene de 10-12 granos, los resultados obtenidos en esta investigación superan los reportes del autor, y se evidencia que al aumentar la densidad de siembra se ve reflejado en la producción ya que tendrán competencia por nutrientes, luz y radiación ocasionado una reducción en el número de grano lo afirma (Mare 1989).
Se puede ver que el peso promedio de los 100 granos se ve afectado por las densidades de siembra donde el T2 presenta el menor peso del grano con 11,6g, seguido por el T1 con 12,8g, T3 14,18g el mayor peso lo obtuvo el T4 con 24,64g. Según (Díaz y Aguilar 1984), indica que el peso del grano aumenta a medida que la densidad de siembra disminuye, coincidiendo con los resultados de la presente investigación, los datos coinciden con los reportes por (Binder, 1988).

Los resultados obtenidos en esta investigación se pueden ver que el tratamiento que mejor rendimiento presento kg/ha fue el T4 con 1500kg/ha, siendo este el de menor densidad de plantas por aérea seguido del T1 con 1000kg/ha mientras que T2 con 500kg/ha y T3 400kg/a. Según (Hakansson, 1983) los rendimientos dependen de la densidad de siembra, si se aumenta la densidad de siembra se aumenta el rendimiento, hay que tener en cuenta el manejo agronómico que se realiza, hasta que pueden reducir los rendimientos.

El estudio de investigación mostrando anteriormente brinda información para el desarrollo del cultivo de frijol caupí (V. unguiculata) en el municipio de Majagual departamento de Sucre, cual necesita de nuevas investigaciones.

9. Componente de Liderazgo Social, Político y Productivo

Para la siembra del primer ciclo en el municipio Achí Bolívar se realizó un día campo donde se integraron estudiantes de la Institución Técnica Agropecuaria de Puerto Venecia (INSETECA), y madres comunitarias de una guardería de nombre los Laureles, se les informó la importancia del proyecto, del cultivo, dándoles a conocer el método de siembra, distancia de siembra, cantidad de semilla por alveolo, distancia entre surco y la importancia de esta.
En el desarrollo del proyecto productivo se realizaron actividades de extensión, en las cuales se transmitió información de las diferentes actividades realizadas durante el desarrollo del proyecto, como es la aplicación de los fertilizantes edáficos, foliares, control de MIPE y la implementación del sistema de riego e informado a los agricultores del manejo sostenible del cultivo. Durante este proceso se capacitaron 10 estudiantes de la Institución técnica agropecuaria del corregimiento de Puerto Venecia Bolívar ver Anexo 15, la capacitación inició con el primer ciclo, la metodología consistió en “aprender haciendo y enseñar demostrando”, se les informó a los estudiantes los aspectos agronómicos útiles para su formación y futuras carreras.

En el municipio de Majagual Sucre, se realizaron capacitaciones a 26 estudiantes de la Institución Educativa de San roque, donde se trataron temas como cuidado del medio ambiente y el calentamiento global, se realizó una actividad de reforestación con árboles maderables de la región, y se realizó la elaboración de abonos orgánicos para la fertilización de los mismos, también se realizó la elaboración del biopreparados para realizar el control de los insectos plagas esta actividad se realizó con presencia de los padres de los estudiantes (ver Anexo 16).

Por otra parte, se organizaron con las 18 mujeres amas de casa, quienes tienen una huerta casera con el nombre de San Miguel, en la vereda de las Agengive Sucre, las capacitaciones y acompañamiento durante del desarrollo de este proceso se realizaron desde la etapa de semillero, siembra, elaboración de abonos orgánicos y la preparación de biopreparados Anexo 17, se les brindó la asistencia en el manejo de huertas, empleando principios de agricultura limpia. Con esta iniciativa se logró que algunas mujeres en sus patios de la casa realizaran huertas.

Se realizaron actividades extensión a la asociación de productores de arroz EPSAGRO APROINCA, realizando capacitaciones a 56 productores, dando a conocer temas como el manejo
adecuado agroquímicos, fertilización, MIPE, calibración de equipos y el uso de los sistemas de riego. Del mismo modo se les comunicó la importancia del cuidado del medio ambiente, como por ejemplo la elaboración de barbecho para depositar los residuos después del lavado de la bomba de espalda, canecas de residuos para los envases vacío y prevenir la disposición de residuo sólidos y líquidos a las fuentes hídricas (ver anexos 18-19-20).

10. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO
10.1. Importancia económica del cultivo

El frijol (*P. vulgaris*) caupí es una leguminosa, que se cultiva prácticamente en todo el mundo, en 129 países de los cinco continentes. Según la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación), América Latina es la zona que concentra mayor producción y consumo, se estima que más del 45% de la producción mundial proviene de esta región, catalogándose como uno de los productos básicos de la economía (FAO 2010).

Entre los países más productores se destaca en orden de importancia expresado en porcentaje de producción mundial ver figura 14, la India, Brasil, Myanmar, Estados Unidos, México y otros (Tanzania 3,4%, Uganda 2,4%, Kenia 2% e Indonesia 1,6%), de los cuales Brasil representa la mayor producción, Además que estos países contribuyen anualmente con el 63% del total producido, Colombia solo representa el 0,6% de la producción mundial (Fenalce 2016).

![Figura 14. Mayores productores de frijol (*P. vulgaris*) del mundo. Fuente: tomada de Fenalce, 2016](image-url)
En cuanto a rendimiento el de mayor productividad es Canadá con 2,27 t/ha, Estados Unidos con 2 t/ha y Chile con 1,8 t/ha. Actualmente el rendimiento de Colombia es de 1,1 t/ha, lo que evidencia un déficit a nivel productivo con respecto al país de mayor productividad (Fenalce 2016).

Por otra parte en Colombia, durante los últimos 20 años, el área de fríjol ha variado entre 164.600 hectáreas, con una producción de 132.120 t y un rendimiento de 803 kg/ha y 120.000 ha, con una producción de 132.000 t, con un rendimiento promedio de 1,1 t/ha, el 93% del área de fríjol está en la zona Andina, el resto se siembra en los Valles Interandinos y la Costa Atlántica, dividida en dos ciclo de producción al año; uno denominado A que es la producción de los primeros meses del año 2016 (tabla 12) y B los últimos meses del año (tabla 13). El 58% de la producción viene de las variedades arbustivas y el 42% de las variedades volubles, (Fenalce, 2016).

Tabla 12. Área, producción y rendimiento de fríjol en Colombia 2016-B.

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Área sembrada final (ha)</th>
<th>Rendimiento (t/ha)</th>
<th>Producción (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolima</td>
<td>6.305</td>
<td>1,37</td>
<td>8.741</td>
</tr>
<tr>
<td>Atlántico</td>
<td>350</td>
<td>1,00</td>
<td>350</td>
</tr>
<tr>
<td>Bolívar</td>
<td>960</td>
<td>1,00</td>
<td>960</td>
</tr>
<tr>
<td>Nariño</td>
<td>9.250</td>
<td>1,47</td>
<td>13.575</td>
</tr>
<tr>
<td>Santander</td>
<td>8.900</td>
<td>1,20</td>
<td>10.770</td>
</tr>
<tr>
<td>Boyacá</td>
<td>1.380</td>
<td>2,0</td>
<td>2.760</td>
</tr>
<tr>
<td>Huila</td>
<td>9.100</td>
<td>1,28</td>
<td>11.660</td>
</tr>
<tr>
<td>Cundinamarca</td>
<td>4.700</td>
<td>1,76</td>
<td>8.260</td>
</tr>
<tr>
<td>Putumayo</td>
<td>2.100</td>
<td>3,60</td>
<td>2.160</td>
</tr>
<tr>
<td>Norte de Santander</td>
<td>3.000</td>
<td>1,20</td>
<td>3.600</td>
</tr>
<tr>
<td>Antioquia</td>
<td>8.159</td>
<td>1,43</td>
<td>11.699</td>
</tr>
<tr>
<td>Total</td>
<td>52.704</td>
<td>1,41</td>
<td>74.535</td>
</tr>
</tbody>
</table>
Por lo tanto, el fríjol se siembra en muchas regiones de Colombia, la mayor producción se concentra en 5 departamentos (Antioquia, Huila, Tolima, Santander, Nariño). Los departamentos anteriormente mencionados contribuyen con las dos terceras partes de la producción, debido a las condiciones de clima, suelos y a la gran tradición que existe en su siembra.

En el 2016 los mayores productores fueron: Nariño 13.575 t, Antioquia 11.699 t, Huila 11.660 t, Tolima 8.741 t y Santander 10.770 t (Figura 15).

A nivel de exportaciones el país no ha sido autosuficiente y desde el año 2006 hasta el 2016, solo se han presentado importaciones, lo que quiere decir, que el país no cuenta con las
producciones requeridas para cubrir el consumo aparente de fríjol a nivel nacional ver figura 16 por lo que se debe traer el producto de otros países.

según (Fenalce 2016), el consumo per cápita del fríjol, no ha sido uniforme presentándose en el año 2012 4kg como el mayor consumo y en el año 2016 con un 2,1kg, como la cifra de menor consumo per cápita por parte de los colombianos, como se puede ilustrar en la siguiente figura 17.

10.2. Comercialización

Se utilizaron dos canales de comercialización ver figura 18, estos fueron clientes potenciales (mayoristas) y consumidores.

![Figura 18. Canales de comercialización de frijol caupí. (V. unguiculata) Fuente: Elaboración propia 2017](image)

Se obtuvo 532 kg de frijol caupí (*V. unguiculata*) de primera, de los cuales 224 kilogramos fueron vendidos a $4,500/kg, para el resto de la producción 308 kilogramos de esta calidad, fueron entregados a un depósito, del cual a medida que se vendía se cancelaba semanalmente con precio de $5.500/kg. El frijol caupí (*V. unguiculata*) de segunda se vendieron 100 kg a $3.000/kg. y la producción de tercera 50kg se utilizó para la alimentación de cerdo. Cabe anotar que solo se generaron ingresos del primer ciclo.
10.3. Mercadeo

Colombia importa Frijol caúpí (*V. unguiculata*) proveniente de países como China, Ecuador y Bolivia (Fenalce, 2014).

Los municipios de Majagual Sucre y Achí Bolívar no representan participación en la producción nacional de frijol. La figura 19 muestra el funcionamiento de comercialización en la zona del proyecto.

![Figura 19. Cadena comercial del Frijol caúpí (*V. unguiculata*) Elaboración propia, 2017.](image)

10.4. Análisis financiero y flujo de caja

Realizando el análisis del flujo de caja para el primer ciclo en el municipio de Achí Bolívar se identificó que los resultados son negativos, ya que se realizó una inversión de $4.103.513.00 obteniendo un ingreso de $ 3.010.000; se debe aclarar que la comercialización se realizó en temporada de precios bajos. En la tabla 14 se muestra el resumen financiero del flujo de caja para el primer ciclo.

La ejecución del segundo ciclo se realizó en el municipio de Majagual Sucre, generando egreso de $900.000, para esta época se presentaron inesperadas lluvias, ocasionando pérdidas del cultivo, situación que obligó a realizar comercialización del sistema de riego por un monto de $ 2,000.000, con el cual se terminó de cubrir el egreso total del primer ciclo de $10.93.513 y los del
segundo ciclo para un total de $1.993.513, en la tabla 15 se muestra el resumen del flujo de caja para el segundo ciclo. Presentado una TIR del -15% lo que indica que el proyecto no es rentable económicamente, donde se tiene una VAN de -$287.023.029 indicando perdigas económicas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>-15%</td>
</tr>
<tr>
<td>VAN</td>
<td>-$287.023.029</td>
</tr>
</tbody>
</table>

Tabla 14. Resumen financiero del flujo de caja para el primer ciclo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos directo</td>
<td>$ 3.603.513</td>
</tr>
<tr>
<td>Costos indirectos</td>
<td>$ 500.000</td>
</tr>
<tr>
<td>Total, Costo del proyecto</td>
<td>$ 4.103.513.00</td>
</tr>
<tr>
<td>Ingresos/ Ventas</td>
<td>$ 3.010.000.00</td>
</tr>
<tr>
<td>TOTAL, FLUJO NETO</td>
<td>$ 0.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, 2017.

Tabla 15. Resumen financiero del flujo de caja para el segundo ciclo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos directo</td>
<td>$ 600.000</td>
</tr>
<tr>
<td>Costos indirectos</td>
<td>$ 300.000</td>
</tr>
<tr>
<td>Total, Costo del proyecto</td>
<td>$ 900.000</td>
</tr>
<tr>
<td>Ingresos/ Ventas</td>
<td>$ 0.00</td>
</tr>
<tr>
<td>TOTAL, FLUJO NETO</td>
<td>$ 0.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, 2017.
10.5. Identificación de oportunidades de nuevos emprendimientos

En los municipios donde se desarrolló el proyecto productivo, existe el interés de fomentar la agricultura como alternativa de desarrollo para la región, a pesar de que el proyecto productivo en el segundo ciclo enfrentó limitaciones, el desarrolló permitió mostrar fundamentos agronómicos y de extensión agrícola localmente, actualmente en la zona se están realizando emprendimientos en cultivos de piña (*Ananas comosus*), sandía (*Citrullus lanatus*), yuca (*Manihot esculenta Crantz*), sorgo (*Sorghum bicolor Moench*), frutales, frijol (*V. unguiculata*), ají (*Capsicum SPP*), habichuela (*Phaseolus vulgaris*), cacao (*Theobroma cacao*), café (*Coffea arabica*) y plátano (*Musa paradisiaca*). A pesar de que el cultivo de arroz (*O. sativa*) es considerado como el principal producto de la zona, el cultivo requiere de servicio de extensión agrícola.

Existe un potencial servicio de asesoría técnica en el manejo de drenajes e instalación de sistemas de riego, manejo agronómico, recomendaciones de fertilización, manejo de plagas y enfermedades. Cabe anotar que es complejo el cambio de climático, y en las épocas en donde históricamente se espera la lluvia, no llueve, o las lluvias son intensas, generando riesgos económicos para los agricultores locales.

10.6. Identificación de organizaciones o actores aliados a nuevos emprendimientos

Durante el desarrollo del proyecto productivo en el municipio de Achí Bolívar, se han evidenciado la presencia de actores o posibles aliados que pueden influir positivamente en cualquier proceso productivo en esta región, de igual forma en la zona se encuentran algunas asociaciones, que están interesadas en proyectos agrícolas estas pueden influir directa e
indirectamente en la tabla 16 se pude ver los actores de la región y los aportes que estos pueden realizar a futuros emprendimientos.

Tabla 16. Actores y posibles aportes a futuros emprendimiento en el municipio de Achí Bolívar

<table>
<thead>
<tr>
<th>Actores y posibles aportes a futuros emprendimientos en el municipio de Achí Bolívar</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANCO AGRARIO</td>
</tr>
<tr>
<td>Gestionar presupuestos para mejorar procesos productivos</td>
</tr>
<tr>
<td>ALCALDÍA Y GOBERNACIÓN</td>
</tr>
<tr>
<td>Generación de asociaciones, con el fin de recibir recursos y aumentar el desarrollo</td>
</tr>
<tr>
<td>FINAGRO</td>
</tr>
<tr>
<td>Financiamiento de proyectos sostenibles para la región</td>
</tr>
<tr>
<td>ASOCIACIONES DE LA REGIÓN</td>
</tr>
<tr>
<td>Compartir experiencias exitosas, por medio de asesorías técnicas.</td>
</tr>
</tbody>
</table>

En el municipio de Majagual Sucre sean evidenciado posibles aliados que pueden influir positivamente en cualquier proceso en esta región, también hay asociaciones interesadas en proyectos agrícolas que puede ser de forma positivo o negativa en la tabla 17 se puede ver los posibles aliados para continuar con nuevos emprendimientos en el municipio de Majagual Sucre.

Tabla 17. Actores y posibles aliados para continuar con nuevos emprendimientos en el municipio de Majagual Sucre

<table>
<thead>
<tr>
<th>Actores y posibles aliados para continuar con nuevos emprendimientos en el municipio de Majagual Sucre</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCALDÍA MUNICIPAL</td>
</tr>
<tr>
<td>Entidad administrativa que puede brindar apoyo a proyectos agrícolas que fomente el desarrollo en el sector rural.</td>
</tr>
<tr>
<td>EPSAGROS</td>
</tr>
<tr>
<td>Organización por parte del ministerio de agricultura que busca integrar al campesino con el fin de articular el encadenamiento productivo del arroz en el municipio.</td>
</tr>
</tbody>
</table>
FEDEARROZ
Es la entidad encargada de llevar a cabo las investigaciones de arroz en el municipio.

BANCO AGRARIO
Es quien puede brindar la oportunidad de crédito para ampliar el área de los cultivos.

10.7. Evaluación de continuidad del proyecto

La implementación de este proyecto productivo ha sido de ejemplo para los agricultores que pensaban que después del arroz no había otro producto de interés económico en la región. La disponibilidad de muchos factores, permite que la producción de frijol se realice de una forma adecuada y acta para el consumo humano, eso sí cuando se tenga en cuenta las épocas de siembra ya que por la variación climática en algunos meses del año generan problemáticas al cultivo, por lo que hay que mejorar algunas actividades o materiales como la implementación de una marquesina, la disponibilidad de productos o insumos agrícolas para el cultivo de frijol en la región y los medios de transportes para el traslado del producto.

Además de lo anterior, se cuenta con actores financieros capaces de brindar presupuesto para el mejoramiento del proceso productivo. Como principales fuentes o actores de financiamiento se puede encontrar el Banco agrario, la Alcaldía y asociaciones locales.

11. CONCLUSIONES

- Actividades como el análisis de suelo, plan de fertilización, riegos y un adecuado manejo integrado de plagas y enfermedades, son factores que favorecen el desarrollo vegetativo y reproductivo del cultivo de frijol caupí (V. unguiculata). Esto se pudo ver reflejado durante
la implementación del primer ciclo de producción, no siendo así en el segundo ciclo, debido a fuertes lluvias en la zona que impidieron la continuidad del cultivo.

- Durante el desarrollo del ensayo investigativo en el cultivo, se pudo percibir que, al haber mayor densidad de plantas por área, la producción tiende a disminuir en un 30%, el tratamiento que mejor comportamiento presento es el T4 con respecto a los demás, presentado mayor altura las planta lograron a tener 48,145cm, el número de vaina por planta fueron de 47 vainas, el número de granos por vaina presento un total de 17.7 granos, el peso de 100 grano fue de 24,64 gramos en cuanto al rendimiento por área se obtuvo un total 1.500 kg/ha, utilizando la densidad de siembra de 0,3 m x 0,8 m siendo este el testigo.
• Atravéz de la asistencia técnica y capacitaciones realizadas se trasmitió conocimiento a estudiante de la Institución Técnica Agropecuaria de Puerto Venecia, a madres comunitarias, ama de casa y agricultores locales, donde se compartieron conocimientos respecto a análisis de suelo, plan de fertilización, el uso de sistema de riego, el manejo integrado de plagas y enfermedades, además la elaboración de abonos orgánicos, y biopreparados.

• Para la comercialización se consideraron elementos como la producción, clasificación por calidad, el tiempo de almacenamiento y los empaques para la distribución del producto. De esta manera obteniendo mejores precios de venta y fortaleciendo la competitividad de la producción.

12. BIBLIOGRAFIA

➢ CIAT. 1985. Frijol: Investigación y Producción. Referencia de los cursos de Capacitación sobre frijol caupí (V. unguiculata) dictados por el Centro Internacional de Agricultura

Ligarreto (1991). Consideraciones generales sobre el cultivo de frijol en Colombia

E D U 2012-2015 (Estudios y Desarrollo Urbano LTD) Plan de desarrollo del municipio de Majagual Sucre.

13. ANEXOS

ANEXO 7. Control de arvenses manuales. Fuente: Elaboración propia, 2017

Nivel de significancia $\alpha = 0,05$

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Ajust.</th>
<th>MC</th>
<th>Valor F</th>
<th>Valor P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>3</td>
<td>51,47</td>
<td>1715,65</td>
<td>19,41</td>
<td>0,000</td>
</tr>
<tr>
<td>Error</td>
<td>76</td>
<td>67,17</td>
<td>88,38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 9. Datos obtenidos del análisis de varianza para la variable altura de la planta Fuente:

Programa de Minitab, 2017.

<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>Media</th>
<th>Agrupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 4.Tes (0,3m*0,8m)</td>
<td>20</td>
<td>48,14</td>
<td>A</td>
</tr>
<tr>
<td>T 3 (0,2m*1m)</td>
<td>20</td>
<td>40,09</td>
<td>B</td>
</tr>
<tr>
<td>T 1 (0,3m*0,6m)</td>
<td>20</td>
<td>38,79</td>
<td>B</td>
</tr>
<tr>
<td>T 2 (0,25m*0,4m)</td>
<td>20</td>
<td>25,77</td>
<td>C</td>
</tr>
</tbody>
</table>

ANEXO 10. Datos obtenidos de la prueba de Tukey para la variable altura de la planta Fuente:

Programa de Minitab, 2017

Nivel de significancia \(\alpha = 0,05 \)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>Ajust.</th>
<th>MC Ajust.</th>
<th>Valor F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>3</td>
<td>4203</td>
<td>1401,0</td>
<td>7,31</td>
<td>0,001</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>6874</td>
<td>190,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>11077</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos obtenidos del análisis de varianza para la variable número de vaina por planta Fuente: Programa de Minitab, 2017.
<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>Media</th>
<th>Agrupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 2 (0,25m*0,4m)</td>
<td>10</td>
<td>20,20</td>
<td>B</td>
</tr>
<tr>
<td>T 1 (0,3m*0,6m)</td>
<td>10</td>
<td>27,10</td>
<td>B</td>
</tr>
<tr>
<td>T 3 (0,2m*1m)</td>
<td>10</td>
<td>24,80</td>
<td>B</td>
</tr>
<tr>
<td>T 4 Tes (0,3m*0,8m)</td>
<td>10</td>
<td>47,00</td>
<td>A</td>
</tr>
</tbody>
</table>

ANEXO 11. Datos obtenidos de la prueba de Tukey para la variable número de vaina por planta

Fuente: Programa de Minitab, 2017.

Nivel de significancia \(\alpha = 0,05 \)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Ajust.</th>
<th>MC Ajust.</th>
<th>Valor F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>3</td>
<td>259,7</td>
<td>86,567</td>
<td>27,01</td>
<td>0,000</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>115,4</td>
<td>3,206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>375,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos obtenidos del análisis de varianza para la variable número de granos por vaina Fuente: Programa de Minitab, 2017
ANEXO 12. Datos obtenidos de la prueba de Tukey para la variable número de granos por vaina

Nivel de significancia $\alpha = 0,05$

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Ajust.</th>
<th>MC Ajust.</th>
<th>Valor F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>3</td>
<td>537,05</td>
<td>179,017</td>
<td>87,22</td>
<td>0,000</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>32,84</td>
<td>2,053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>569,89</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos obtenidos del análisis de varianza para la variable peso promedio de 1000 grano Fuente: Programa de Minitab, 2017.

<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>Media</th>
<th>Agrupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 4. Tés (0,3m*0,8m)</td>
<td>5</td>
<td>24,640</td>
<td>A</td>
</tr>
<tr>
<td>T 3 (0,2m*1m)</td>
<td>5</td>
<td>14,180</td>
<td>B</td>
</tr>
<tr>
<td>T 1 (0,3m*0,6m)</td>
<td>5</td>
<td>12,800</td>
<td>B</td>
</tr>
<tr>
<td>T 2 (0,25m*0,4m)</td>
<td>5</td>
<td>11,600</td>
<td>B</td>
</tr>
</tbody>
</table>

ANEXO 13. Datos obtenidos de la prueba de Tukey para la variable peso promedio de 100 grano

Nivel de significancia $\alpha = 0,05$

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Ajust</th>
<th>MC Ajust</th>
<th>Valor F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>3</td>
<td>12320000</td>
<td>4106667</td>
<td>5,12</td>
<td>0,003</td>
</tr>
<tr>
<td>Error</td>
<td>60</td>
<td>48162200</td>
<td>802703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
<td>60482200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos obtenidos del análisis de varianza para la variable rendimiento kg/ha Fuente: Programa de Minitab, 2017

<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>Media</th>
<th>Agrupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4. T (0,3m*0,8m)</td>
<td>16</td>
<td>1500</td>
<td>A</td>
</tr>
<tr>
<td>T1 (0,3m*0,6m)</td>
<td>16</td>
<td>1000</td>
<td>A B</td>
</tr>
<tr>
<td>T2 (0,25m*0,4m)</td>
<td>16</td>
<td>500,0</td>
<td>B</td>
</tr>
<tr>
<td>T3 (0,2m*1m)</td>
<td>16</td>
<td>400,0</td>
<td>B</td>
</tr>
</tbody>
</table>

ANEXO 14. Datos obtenidos de la prueba de Tukey para la variable rendimiento kg/ha Fuente:

Programa de Minitab, 2017
ANEXO 15. Capacitación a estudiantes de la Institución técnica agropecuaria del corregimiento de Puerto Venecia Bolívar.

ANEXO 16. Capacitación a estudiantes de la Institución Educativa San roque del municipio de Majagual Sucre. Fuente: Elaboración propia 2017

ANEXO 18. Capacitaciones a agricultores de arroz. De la mano de EPSAGRO. Fuente: Elaboración propia, 2017

ANEXO 19. segundo ciclo afectado por lluvia
ANEXO 20. Fertilización edifica y foliar del primer ciclo

ANEXO 21. Empaque y comercialización del producto

ANEXO 22. Ensayo investigativo
ANEXO 23. Estudiantes de la Institución Educativa San roque
ANEXO 24. Capacitaciones a productores y amas de casa.
ANEXO 25. Capacitaciones a productores de arroz, de la mano con APROINCA.