Determinar el tiempo de suministro de probióticos que permita mantener durante más tiempo una alta viabilidad de permanencia de microorganismos benéficos

Cristian Mauricio Rozo Cruz

Participación activa en proyectos de investigación disciplinar o interdisciplinar, presentado como requisito parcial para optar al título de:

Zootecnista

Director:
Rubén Darío Valbuena Villareal Biol. MSc.

Proyecto:
OBTENCION DE PROTOCOLOS DE ALIMENTACION PARA TILAPIA CON EL USO DE SUPLEMENTOS PROBIÓTICOS A PARTIR DE LA EVALUACION DE LA PRESENCIA DE MICROORGANISMOS BENEFICOS EN SU INTESTINO Y SU EFECTO SOBRE LA PRODUCTIVIDAD EN EL CULTIVO

Universidad de la Salle
Facultad de Ciencias Agropecuarias
Programa de Zootecnia
Bogotá, Colombia
2016
Contenido

1. Introducción..5
2. Planteamiento del problema ..8
3. Objetivos ...9
 3.1 General ...9
 3.2 Objetivos Específicos ..9
4. Hipótesis ..10
 ¡Error! Marcador no definido.
5. Marco teórico ..11
 5.1 Situación piscícola ..11
 5.2 Enfermedades bacterianas en Tilapia roja ..11
 5.3 Probiótico ...12
 5.4 Agar ...12
 5.5 UFC ...13
 5.6 Uso de probióticos en la piscicultura ...13
 5.7 Pond TossTM ..15
 5.8 FeedTreatTM ...15
6. METODOLOGÍA ...17
 6.1 Caracterización del probiótico ..18
 6.2 Escalamiento e impregnación del probiótico18
 6.3 Peces experimentales ...22
 6.4 Registro de desempeño ...25
7. RESULTADOS Y DISCUSION ...26
 7.1 Caracterización del probiótico ..26
 7.2 Escalamiento e impregnación del probiótico29
 7.3 Peces experimentales ...30
 7.4 Registros de desempeño ..32
8. Impacto e indicadores ..36
9. CONCLUSIONES ...37
10. Bibliografía ..39
Lista de figuras

Figura 6-1 Pesaje del concentrado ... 19
Figura 6-2 Reactivación del probiótico .. 20
Figura 6-3. Toma del 30% (V/P) de probiótico ... 20
Figura 6-4. Trabajo en cámara de flujo laminar ... 21
Figura 6-5. Impregnación en alimento concentrado 21
Figura 6-6 Aclimatamiento de los peces ... 23
Figura 6-7 Distribución de los peces por tratamiento 23
Figura 6-8. Procedimiento de corte y disección .. 24
Figura 6-9 Procedimiento de corte y disección ... 24
Figura 7-1 Morfología macroscópica de las bacterias presentes en el probiótico 1 (Plate Count Agar) ... 26
Figura 7-2 Morfología macroscópica de las bacterias presentes en el probiótico 2 (Plate Count Agar) ... 27
Figura 7-3 Microfotografía de bacilos en parejas (100x) 27
Figura 7-4 Resultados de la siembra de muestras en Agar Macconkey, indicando la ausencia de bacterias Gram negativas en los productos comerciales 28
Figura 7-5 Recuento bacteriano en PCA de los probióticos 28
Figura 7-6 Recuento bacteriano en el concentrado 29
Figura 7-7 Crecimiento en agar PCA, disecciones por cada tratamiento 32
Lista de Tablas

Tabla 5-1 Ficha técnica Pond Toss. (KEETON INDUSTRIES, 2016)15
Tabla 5-2 Ficha técnica FeedTreatTM. (KEETON INDUSTRIES, 2016)16
Tabla 6-1 Resumen de la estructura de diseño del proyecto17
Tabla 7-1 Resumen de la estructura de diseño del proyecto17
Tabla 7-1. Recuento bacteriano disecciones ..30
Tabla 7-2 Resumen de registros en longitud total (cm) de los peces al día de inicio del experimento ..33
Tabla 7-3 Resumen de registros en longitud total (cm) de los peces al día de inicio del experimento ..33
Tabla 7-4 Resumen de registros en longitud total (cm) de los peces al día 30 de seguimiento ..34
Tabla 7-5 Resumen de registros en longitud total (cm) de los peces al día 30 de seguimiento ..35
1. Introducción

La producción acuícola y pesquera de Colombia se constituye en una de las principales opciones de seguridad alimentaria para nuestra región dado el potencial hídrico del país. En las últimas décadas, debido a la ubicación geográfica, estabilidad de las temperaturas, la variedad de pisos térmicos, costas sobre los dos océanos, y nuestra red fluvial con una de las más amplias variedades acuícolas del planeta; nuestro país ha alcanzado un crecimiento significativo en el desarrollo de la piscicultura.

Actualmente la producción acuícola nacional está representada en su mayoría por peces, en un 84%; los camarones aportan el 16% restante. En la región Andina se concentra el 58% de la producción (con tilapias, cachamas y truchas); le siguen las regiones Caribe (17,5%) y la Pacífico con el 6,5%; en la Orinoquia, con un 16%, se tienen tilapias y cachamas, básicamente en el departamento del Meta. La Amazonía aporta el 2%, especialmente representado por peces ornamentales. (Arbelaez, 2011)

En particular, el departamento del Huila es líder en la producción piscícola, la que se basa tanto en explotaciones de tipo semi-intensivo (en estanques) como intensivas y súper-intensivas (jaulas y jaulones); las implicaciones sociales de la actividad son importantes, pues para la región implica un relevante renglón económico, en lo que se refiere a la incorporación de mano de obra rural, especializada y no especializada. Se ubica al departamento como el mayor productor de tilapia en el país, con un incremento sustancial que va desde 7776 ton en el 2003, hasta 31619 ton en 2011 y algo más de 35000 ton en el 2013. La escala de la exportación, en diferentes presentaciones del producto, ha tenido un crecimiento equivalente. (Arbeláez, 2011; Esquivel et al, 2014)
El sistema digestivo de los peces es un ecosistema microbiano complejo y activo, en el cual unos amplios rangos de los microorganismos presentes provienen tanto del medio acuático como de los sedimentos y el alimento suministrado; estudios enfocados en la composición microbiana intestinal y sus actividades se dirigen a propiciar mejores condiciones de salud para el huésped, los que se evidencian en indicadores de crecimiento, inmunidad, equilibrio intestinal y resistencia a enfermedades. Se trabaja entonces con suplementos dietarios, entre los que distinguen los probióticos; estos son, en esencia, microorganismos benéficos que aportan en términos de nutrición; pueden ser incorporados a través del alimento o el agua. Desarrollar protocolos de alimentación con este tipo de productos permite mejorar estándares productivos, lo cual tiene impactos positivos en la productividad global de las granjas piscícolas (Monroy et al. 2012). Como un probiótico se entiende un suplemento microbiano formado por un cultivo simple o una mezcla de microorganismos que son adicionados con el propósito de manipular las comunidades microbianas presentes en los sistemas de producción (Balcazar, 2002).

Por otra parte, en cultivos de alta carga, la aparición de patologías de origen bacteriano trae una elevada utilización de antibióticos, situación no deseable e inconveniente desde varios puntos de vista. Entre las posibles alternativas de prevención se tiene el uso de probióticos.

El posible efecto benéfico de estos probióticos se focaliza en aspectos de mejoramiento de la calidad del agua, metabolización de materia orgánica y la exclusión competitiva de bacterias (Wang et al. 2000, Verschuere et al. 2000); se basa en que hay una competencia por nutrientes (mediante el aporte diferencial de macro, micronutrientes y enzimas digestivas), sitios de fijación en el intestino y el aumento de la respuesta inmunológica del hospedero.
En la modalidad de trabajo de grado que la universidad de La Salle establece como PARTICIPACIÓN ACTIVA EN PROYECTOS DE INVESTIGACIÓN DISCIPLINAR O INTERDISCIPLINAR, el presente trabajo se enmarcó dentro del proyecto “OBTENCIÓN DE PROTOCOLOS DE ALIMENTACIÓN PARA TILAPIA CON EL USO DE SUPLEMENTOS PROBIÓTICOS A PARTIR DE LA EVALUACIÓN DE LA PRESENCIA DE MICROORGANISMOS BENEFICOS EN SU INTESTINO Y SU EFECTO SOBRE LA PRODUCTIVIDAD EN EL CULTIVO”, formulado y ejecutado por la Universidad Surcolombiana en el departamento del Huila. En particular, la participación profesional estuvo circunscrita al aporte puntualizado sobre el desarrollo parcial del objetivo específico: “Determinar el tiempo de suministro de probiótico que permita mantener durante más tiempo una alta viabilidad de permanencia de microorganismos probióticos benéficos”.

Al final, se establecieron los medios dirigidos a aplicar un protocolo para implementar un probiótico comercial para su impregnación en concentrado para alimentación de tilapia. Este documento, por tanto, presenta los resultados que, dentro del marco del objetivo mencionado, fueron obtenidos durante el tiempo en el que se desarrolló el trabajo experimental.
2. Planteamiento del problema

En animales de cultivo, especialmente cuando se trabajan altas densidades, es frecuente la aparición de patologías de diferente naturaleza; es también una práctica común el que estas se resuelvan mediante la aplicación de medicamentos, entre los cuales los antibióticos son preferiblemente utilizados. No obstante, este tipo de manejo, cuando se utiliza sin mecanismos serios de control, conlleva a situaciones que pueden significar un impacto desfavorable desde varios puntos de vista. Desde los estrictamente económicos, asociados al costo mismo de los productos, hasta los que tienen que ver con aspectos biológicos como la generación de resistencias o que implican el aporte de residuales al medio o a organismos de consumo; se trata de esquemas que deben ser manejados bajo principios de cautela estricta.

El uso de probióticos se convierte en una alternativa interesante, bajo el entendido de que el suministro de microorganismos vivos puede suponer un efecto benéfico sobre el huésped, lo que ha sido evaluado en la práctica desde hace años (Ronson & Medina, 2002). No obstante, son escasos los referentes en los que se hace mención a los procedimientos y tiempos en los que este suministro es realmente efectivo en el caso de los peces; un exceso en la utilización de probióticos puede generar una permanente estimulación del sistema inmunológico, además de sobrecostos no soportables dentro de la estructura productiva. La precisión de tiempos de aplicación, el tipo de probiótico y su efecto zootécnico se convierten por tanto en una necesidad experimental, destinada a disminuir la aparición de patologías, la promoción de tasas de desempeño y la disminución de costos cuando se pretende utilizar este tipo de opciones dentro de sistemas de cultivo de peces. Por sus características, su importancia regional y las evaluaciones que indican problemas tempranos de viabilidad, las tilapias configuran un grupo objetivo fundamental para este tipo de valoración.
3. Objetivos

3.1 General

Evaluar el efecto de los probióticos Pond Toss™ y FeedTreat™ incluidos en la alimentación de juveniles de tilapia roja (*Oreochromis spp*) en cuanto a ganancia de peso, conocimiento de patologías de clima cálido causadas por virus y bacterias, así como la permanencia de microorganismos benéficos en dichos peces.

3.2 Objetivos Específicos

- Caracterizar dos probióticos comerciales para describir de manera general los microorganismos presentes en ellos.

- Formular las disoluciones para obtener una apropiada cantidad de micrororganismos benéficos, que permitan el control de las patologías propias del ambiente y un nivel de crecimiento superior al control.

- Evaluar el crecimiento y la ganancia de peso de juveniles de la especie en condiciones de laboratorio con base en suministros diferenciales de probióticos, así como el crecimiento de microorganismos benéficos en los intestinos de los juveniles de tilapia roja (*Oreochromis spp*).
4. Hipótesis

Es factible mejorar el desempeño del crecimiento y la inmunidad a patologías generadas en el entorno de la producción de tilapia roja (*Oreochromis spp*), a través del suministro de probióticos Pond Toss™ y FeedTreat™.
5. Marco teórico

5.1 Situación piscícola

En la actividad piscícola mundial, el grupo de las tilapias es uno de los más relevantes en términos de aporte a la producción de proteína animal, lo que es particularmente notorio en países en vías de desarrollo (Lara-Flores et al, 2002). (FAO, 2014) Menciona que, en volumen producido, las tilapias ocuparon en el año 2014 el segundo puesto en la producción mundial, con 1,6 millones de toneladas.

Más del 83% de los cultivos de tilapia roja (*Oreochromis spp*), reportan enfermedades de origen bacteriano causados por (*Aeromonas hydrophila, Aeromonas sp.*, *Edwardsiella tarda, Streptocopus sp*) y patógenos como (*Trichodinas, trematodos mono y digestivos, coccidias, Piscicrytosporidium sp.*, *Cryptobia sp.*, *Saprolegnia sp.*) (Rey, 2002)

5.2 Enfermedades bacterianas en Tilapia roja

Entre las cepas bacterianas y su interacción con peces se tiene, por ejemplo, la demostración de la resistencia a *Pseudomonas plecoglosscida*, bacteria Gram negativa que causa hemorragias, con el uso de bacteriófagos vivos (Park, 2007). (Lategan et al., 2004) demuestran que Aeromonas cepa A199, crea resistencia a *Saprolegnia parasítica*. Con *Lactobacillus rhamnosus*, se promueve resistencia y mayor respuesta inmune a la *Aeromonas salmonicida*, bacteria que causa hemorragias en los músculos e hinchazón de la piel en los peces infectados (Nikoskelainnen et al., 2001). (Flores, 2003). Comprueba el efecto benéfico de *Saccharomyces cerevisiae* en la ganancia de peso y la eficiencia alimenticia en tilapias, cuando comparan un probiótico comercial contra microorganismos aislados.
del tracto gastrointestinal de los peces tratados. Se ha evaluado el efecto del probiótico con relación al esquema de alimentación aplicado; (Mesalhy et al., 2008), encuentra que frente a desafíos con *Aeromonas hydrophila*, hay una mejor respuesta inmune de los peces alimentados solamente un mes con probióticos, de origen nativo o disponibles comercialmente.

En resumen, los objetivos experimentales sobre el empleo de probióticos se han orientado a evaluar el efecto en el crecimiento y la disminución de las pérdidas por mortalidad en los cultivos de tilapia. Factores como el tiempo de administración y la permanencia del probiótico en el tracto gastrointestinal, como moduladores de la estimulación de la respuesta inmune en el hospedero aún están por precisar (Nayak et al., 2010).

5.3 Probiótico

Son bacterias buenas que ayudan a mantener un equilibrio saludable, estimulan la inmunidad intestinal, producen metabolitos que generan antagonismo contra los patógenos y protegen la mucosa intestinal. (Watson, Kaspar, Lategan, & Gibson, 2008).

5.4 Agar

Es un medio de cultivo utilizado básicamente para todo tipo de bacteria, es eficiente puesto que permanece sólido incluso a temperaturas altas. Proporciona los nutrientes necesarios para el crecimiento bacteriano en la superficie, haciendo muy fácil distinguir mejor las colonias. (Pisabarro, 2009).
5.5 UFC

Unidades formadoras de colonias, son el recuento de una o varias células viables o reales, las cuales se encuentran en un substrato y en condiciones ambientales adecuadas para reproducirse, dando como resultado colonias en poco plazo. Dichas células o microorganismos se cualificación en medios específicos (agares), para evaluar la aparición de unidades formadoras de colonias (UFC), lo cual consiste en sembrar un volumen determinado de cultivo o una muestra sobre el medio sólido adecuado en este caso el agar, para estimar el número de viables contando el número de colonias que se forman puesto que cada una de esta deriva de una UFC. Para que la medida sea correcta desde el punto de vista estadístico, es necesario contar menos de 300 UFC. (Pisabarro, 2009).

5.6 Uso de probióticos en la piscicultura

El uso de microorganismos vivos con los que sea posible manipular la micro flora y mejorar la salud intestinal y el bienestar general de un organismo, tiene sus primeras raíces en el año 1888 por investigaciones llevadas a cabo por Beijerinck y Winogradsky. (Debre, 2003) Se fundamenta en la utilización de bacterias que son efectivas en el control de microorganismos patógenos lo que, a su vez, indirectamente promueve un efecto benéfico sobre el huésped. Para el caso de la acuicultura, la mayoría de productos que se han propuesto son los denominados probióticos y, entre estos, se tienen diferentes grupos dentro de las bacterias ácidos lácticas, como los géneros Vibrio, Bacillus y Pseudomonas, principalmente (Watson, Kaspar, Lategan, & Gibson, 2008).

Con lo expuesto, al final se trata de microorganismos vivos que generan un efecto benéfico en el hospedero, en tanto modifican la composición de la micro biota asociada, incrementando las posibilidades de aprovechamiento del alimento que consume el organismo. Se mejora también el sistema inmunológico, de forma que
se promueven defensas ante patologías asociadas a los ambientes de cultivo, en especial aquellos intensivos o de alta carga. En general, un probiótico se compone de diferentes cepas de bacterias que cumplen roles específicos; pueden generar nutrientes esenciales que mejoran el aprovechamiento del alimento o que tienen influencia sobre las condiciones que caracterizan el sistema digestivo. De alguna manera, la aplicación de los probióticos en la producción animal actúa como un control biológico y es una alternativa favorable al impedir crecimientos bacterianos oportunistas, promoviendo la instalación de microorganismos benéficos tanto en los peces como en el medio de cultivo (Villamil & Martinez, 2009).

Estos microorganismos trabajan de forma diferente, lo que está en relación con el tipo de bacteria y la especie sobre la que actúan. Generan una exclusión competitiva en estomago e intestino, pues entran a competir más eficientemente por los nutrientes disponibles, desplazando patógenos nocivos. También mejoran aspectos de digestión a través de la producción de enzimas; el estímulo de la respuesta inmune de ciertos microrganismos estimula igualmente el mecanismo de defensa inespecífico del individuo. En el entorno ambiental, por efectos de degradación de materia orgánica, se tiene una acción positiva adicional de los probióticos (SENA, 2012).

Los probióticos son formados a partir de cepas individuales de bacterias, por lo que deben ser seleccionadas específicamente para los hospederos de destino. (Duwalt et al., 2000) factores implicados en la selección incluyen la tolerancia a ácidos (para el tránsito por el tracto intestinal, superando las variaciones de pH), la acción de enzimas de la cavidad oral (lisozimas y amilasas), las concentraciones de sales biliares y jugos pancreáticos segregadas en el intestino delgado; debe ser capaz de adherirse al epitelio intestinal para evitar que se convierta en un organismo transitorio y, por último, la bacteria debe ser capaz de asentarse en un nicho específico dentro del intestino. Estas condiciones modularán su efectiva acción benéfica (Escobar et al., 2006)
Dentro de los principales probióticos comerciales utilizados en piscicultura se encuentran Pond Toss™ y FeedTreat™.

5.7 Pond Toss™

Suplemento probiótico totalmente natural, fabricado por KEETON INDUSTRIES, es una mezcla de las mejores bacterias probióticas, su fórmula está acondicionada para el uso directo en el agua, Pond Toss™ mejora la salud y el crecimiento del pez, también ayuda a mejorar la calidad del agua reduciendo el amonio, nitritos y nitratos. (KEETON INDUSTRIES , 2016).

<table>
<thead>
<tr>
<th>Recuento de bacterias</th>
<th>2.0 mil millones de UFC/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textura</td>
<td>Granular</td>
</tr>
<tr>
<td>Color</td>
<td>Marrón</td>
</tr>
<tr>
<td>Olor</td>
<td>Levadura</td>
</tr>
<tr>
<td>pH</td>
<td>Neutro</td>
</tr>
<tr>
<td>Rango óptimo de pH</td>
<td>5.08 a 10.05</td>
</tr>
<tr>
<td>Temperatura optima</td>
<td>10° a 38°C</td>
</tr>
<tr>
<td>Presentación</td>
<td>Cubo 11 kg</td>
</tr>
<tr>
<td>Vida útil</td>
<td>2 años</td>
</tr>
</tbody>
</table>

Tabla 5-1 Ficha técnica Pond Toss™. (KEETON INDUSTRIES , 2016)

5.8 FeedTreat™

Suplemento probióticos y de nutrientes que aumentan la supervivencia del pez, fabricado por KEETON INDUSTRIES, aumenta un desarrollo inmunológico a patologías que se presentan en el entorno del cultivo, su mezcla de nutrientes aumenta la función metabólica del pez causando que la conversión alimenticia aumente, FeedTreat™ proporciona una eficiencia proteica al pez, esto hace que
crezca más rápido y uniformemente, esto hace que el estrés por competencia de alimento disminuya. (KEETON INDUSTRIES, 2016).

Tabla 5-2 Ficha técnica FeedTreat™. (KEETON INDUSTRIES, 2016)

<table>
<thead>
<tr>
<th>Recuento de bacterias</th>
<th>2.0 millones de UFC/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textura</td>
<td>Granular</td>
</tr>
<tr>
<td>Color</td>
<td>Blanco</td>
</tr>
<tr>
<td>Olor</td>
<td>Sal</td>
</tr>
<tr>
<td>pH</td>
<td>Neutro</td>
</tr>
<tr>
<td>Rango óptimo de pH</td>
<td>5.08 a 10.05</td>
</tr>
<tr>
<td>Temperatura optima</td>
<td>10° a 38°C</td>
</tr>
<tr>
<td>Presentación</td>
<td>Cubo 11 kg</td>
</tr>
<tr>
<td>Vida útil</td>
<td>2 años</td>
</tr>
</tbody>
</table>
6. METODOLOGÍA

El trabajo se adelantó en los laboratorios de Microbiología y Acuicultura de la Universidad Surcolombiana (Neiva, Huila). La evaluación que corresponde al apoyo en el proyecto de investigación estuvo definida en el uso de dos productos probióticos comerciales, probiótico 1 Pond Toss™ y probiótico 2 FeedTreat™ (Tablas 5-1 y 5-2). Se utilizaron 300 juveniles de tilapia roja, con su respectivo proceso de reversión sexual, los cuales se seleccionaron por talla y peso y se utilizaron 210 juveniles, para ser distribuidos en 21 acuarios. La evaluación de los probióticos se hizo en 6 tratamientos y un control por triplicado, lo cual se resume en la (Tabla 6-1).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Probiótico</th>
<th>Tiempo de suministro</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>5 días</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>10 días</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>15 días</td>
</tr>
<tr>
<td>T4</td>
<td>2</td>
<td>5 días</td>
</tr>
<tr>
<td>T5</td>
<td>2</td>
<td>10 días</td>
</tr>
<tr>
<td>T6</td>
<td>2</td>
<td>15 días</td>
</tr>
<tr>
<td>T7 (CONTROL)</td>
<td></td>
<td>30 días</td>
</tr>
</tbody>
</table>

Tabla 6-1 Resumen de la estructura de diseño del proyecto
6.1 Caracterización del probiótico

Descripción microscópica y macroscópica
Para el reconocimiento de los microorganismos en lo probióticos, se realizó la siembra en agar MRS, PCA. Para esto los productos fueron activados adicionando 1 gr de cada producto en 9 ml de agua destilada y esterilizada, luego de una hora se comprobó al microscopio la activación, mediante la presencia de las bacterias. Una vez corroborado con ayuda de una micro pipeta se procedió a tomar una alícuota de 100 μL del producto e inoculado en agar MRS, PCA, MC CONKEY, SABOREAU, en diluciones decimales hasta la 10. (Volke et al., 2012).

Pruebas de pureza del producto
Adicionalmente se realizaron ensayos para evaluar la pureza de los probióticos utilizando agar Macconkey como control. Se trata de un medio de cultivo de peptonas que aportan nutrientes específicos para el aislamiento de bacilos Gram negativos de fácil desarrollo, aerobios y anaerobios facultativos; permite diferenciar bacterias de todas las especies de la familia Entebacteriaceae. (Seoud et al., 2011).

Para el escalamiento de los probióticos destinados a los ensayos, la reactivación in vitro del producto (presentación granulada y de uso directo en el agua). Se realizó en agua destilada (en una concentración de 0.005 %P/V). Para determinar la viabilidad, se realizó la siembra de 0.1ml en agar PCA 24 horas a 35°C, en diluciones seriadas en agua peptonada hasta una concentración de 1.0E-15. La aplicación fue modificada y la adición se adelantó directamente en el concentrado. (Volke et al., 2012).

6.2 Escalamiento e impregnación del probiótico

En primer lugar, se realizó una dilución al 0,1% P/V de los probióticos, lo cual se hizo para obtener un recuento bacteriano mayor a 108 UFC del inoculo. Con esta
dilución se impregnó el alimento a razón del 30% v/w, luego de homogeneizada la muestra y fue secado a 45°C por 2 horas (Volke et al., 2012).

Para la impregnación del alimento con los probióticos se utilizó un procedimiento estándar. La cantidad de alimento se dispuso en bandejas de aluminio cubiertas con parafilm y se humedeció con la disolución en agua peptonada de probiótico mediante aspersión, luego se esperó a que impregnara bien el alimento, después de esto se hizo el proceso secado por una hora a 35°C en una estufa de secado. Como lo se muestra en las (Figuras 6-1 a 6-5).

Figura 6-1 Pesaje del concentrado
Figura 6-2 Reactivación del probiótico

Figura 6-3. Toma del 30% (V/P) de probiótico
Para determinar la viabilidad de los microorganismos después del procedimiento de secado, se tomaron muestras que fueron diluidas y sembradas en 0.1 ml en agar PCA. (Volke et al., 2012)
6.3 Peces experimentales

La evaluación de la capacidad de colonización y la determinación de tiempo de permanencia de microorganismos presentes en el intestino se realizó con 210 juveniles de tilapia roja. El peso medio inicial fue de 1,5 g, totalmente reversados, los que fueron localizados en tanques plásticos circulares de 500 L de capacidad (Figura 6-6). Se les suministro concentrado comercial para la especie (Solla mojarras 38 % PB), a una tasa del 4.5 % de la biomasa día, la cual es baja puesto que es un ensayo a baja escala dentro un laboratorio.

Al finalizar este periodo de alimentación se sacrificaron 2 peces por acuario (tiempo 0) y se hizo un recuento microbiano del intestino disectado, siguiendo la técnica de diluciones decimales (AOAC, 2012). Se sembrará 0.1ml de las diluciones 103 a 108 en agares selectivos, incubados por 48 h.

Posteriormente, para estimar el efecto del probiótico sobre el desempeño, del lote inicial se seleccionaron al azar 210 peces, los que se ubicaron en un acuavite el cual es un circuito de flujo cerrado, con 21 acuarios de 30 L cada uno y en una densidad de carga ajustada a 3.3 g L⁻¹; se trata de un sistema que permite el manejo controlado del flujo de agua en recirculación, la cual es pasa por un proceso de filtración con guata, roca volcánica, piedras de rio y arena, cuenta con un proceso de filtración luces UV, los cuales ayudan a cumplir un sistema de biofiltacion el cual ayuda a degradar compuestos nitrogenados como amonio, nitritos y nitratos, su sistema de aireación es constante puesto que es una sistema cerrado y los peces dependen del oxígeno disuelto en el agua que le proporciona dicho sistema (Figura 6-7).
Finalmente, se realizó un conteo de los microorganismos presentes en el intestino de los peces. La extracción se realizó por disección y el tejido, a los 5, 10 y 15 días según los tratamientos (figuras 6-8 y 6-9), se mantuvo en tubos de ensayo con 9 mL de agua peptonada; se hicieron diluciones seriales y la siembra fue en agares PCA Y Macconkey.
Cada 15 días se tomaron datos de peso (g), longitud estándar (cm), sobrevivencia (%) y conversión alimenticia. Permanentemente se monitoreo la calidad del agua en parámetros de oxígeno disuelto, pH y temperatura, la medición de compuestos nitrogenados no se llevó a cabo puesto que el sistema en el que los peces se disponen, es una sistema cerrado y su proceso de biofiltracion ayuda a degradar dichos compuestos yo se podría tener una media exacta de su concentración en el agua.
6.4 Registro de desempeño

Los registros de crecimiento bacteriano se presentan de forma descriptiva, de acuerdo a las características que presentaron las colonias en los diferentes medios de cultivo, lo que facilitó la identificación de las especies presentes. Con los datos de desempeño se hizo una comparación estadística mediante ANOVA (modelo de efecto aleatorio), basada en el incremento en peso y longitud durante el periodo experimental; cuando fue necesario, las diferencias se precisaron mediante análisis de Tukey (α=0.05). Para los análisis se utilizó el programa estadístico (IBM SPSS Statistics versión 20.0 (2011) Colombia) y las correspondientes aplicaciones de Microsoft Excel (2011).
7. RESULTADOS Y DISCUSION

7.1 Caracterización del probiótico

Descripción macroscópica
Con la siembra en los agares específicos se obtuvo una descripción general de las bacterias presentes en los dos probióticos evaluados. Para los dos probióticos las colonias presentaron una morfología que es característica del género *Bacillus*, con formas irregulares, circulares, rizoides; muestran bordes enteros, lobulados, ondulados y elevación plana y convexa. La coloración fue blanca en todas las colonias observadas (Figuras 7-1 y 7-2).

Figura 7-1 Morfología macroscópica de las bacterias presentes en el probiótico 1 (Plate Count Agar)
Figura 7-2 Morfología macroscópica de las bacterias presentes en el probiótico 2 (Plate Count Agar)

Descripción microscópica
Bajo tinción de Gram, se observaron bacilos Gram positivos, en cadenas y en pareja (de tamaño mediano y pequeño), como se presenta en la (figura 7-3).

Figura 7-3 Microfotografía de bacilos en parejas (100x)
Pruebas de pureza del producto
Como se anotó, la determinación de una posible contaminación de los productos se realizó mediante pruebas control en agar Macconkey, incubando las muestras a 35°C por un periodo de 24 horas (Volke et al., 2012). Se certificó la pureza de los dos probióticos pues, después del tiempo de incubación, no se presentó crecimiento en ninguno de los casos. Por tanto, no se presentó contaminación por microorganismos Gram negativos (Figura 7-4).

Figura 7-4 Resultados de la siembra de muestras en Agar Macconkey, indicando la ausencia de bacterias Gram negativas en los productos comerciales

En el agar sabureau se encontraron colonias, con similitud a las encontradas en el agar PCA, se realizó tinción de Gram y se observaron bacilos y levaduras.

Figura 7-5 Recuento bacteriano en PCA de los probióticos.
En resumen, los resultados de los análisis iniciales sobre los dos probióticos fueron similares en lo que se refiere a las valoraciones macro y microscópica. Las colonias con formas irregulares, circulares, rizoides; con bordes enteros, lobulados, ondulados, elevación plana y convexa; en los dos casos se observaron células en forma de bacilos largos, cortos y medianos, en parejas.

7.2 Escalamiento e impregnación del probiótico

En los dos probióticos el recuento bacteriano después del escalamiento fue superior a 8 UFC/g, lo cual está acorde con lo expuesto por algunos autores, referente a que un producto se considera con acción probiótica cuando sus recuentos sobrepasan 8 UFC/g.

Si bien hay diferencias entre los probióticos en lo que se refiere a las UFC/g, la cantidad final es superior al estándar límite (Probiótico 1: Pond Toss™ UFC/g y Probiótico 2: FeedTreat™ UFC/g indicando un recuento apto para la realización de las pruebas. Los productos están conformados por bacterias del género Bacillus, además de levaduras.

Después del periodo de secado (1 h), la viabilidad fue superior a 1×10^{11} UFC/g en el caso del probiótico 1. Para el probiótico 2 la viabilidad fue superior a las 1×10^{12} UFC/g

![Secado una hora UFC/g](image)

Figura 7-6 Recuento bacteriano en el concentrado
7.3 Peces experimentales

Al realizar las diferentes disecciones de los tratamientos el recuento para la mayoría de los tratamientos no se pudo llevar a cabo, debido que el crecimiento fue invasivo por toda la placa, cabe anotar que se realizaron diluciones seriadas hasta \(1 \times 10^{20}\) (Figura N°7-7 y Tabla N° 7-1).

Tabla 7-1. Recuento bacteriano disecciones

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Día 0</th>
<th>Día 4</th>
<th>Día 7</th>
<th>Día 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probiótico 1</td>
<td>Probiótico 2</td>
<td>Probiótico 1</td>
<td>Probiótico 2</td>
</tr>
<tr>
<td>1</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
<tr>
<td>2</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
<tr>
<td>3</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
<tr>
<td>4</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
<tr>
<td>5</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
<tr>
<td>6</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
<td>>10 CiclosLog</td>
</tr>
</tbody>
</table>

Esta tabla nos afirma que la impregnación de los probióticos en el alimento, tuvo un crecimiento y permanencia en el intestino de los peces tratados y que el tratamiento control no tuvo un crecimiento bacteriano.
<table>
<thead>
<tr>
<th>Tratamiento 1. Disección 1</th>
<th>Tratamiento 1. Disección 2</th>
<th>Tratamiento 1. Disección 3</th>
<th>Tratamiento 1. Disección 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento 2. Disección 1</td>
<td>Tratamiento 2. Disección 2</td>
<td>Tratamiento 2. Disección 3</td>
<td>Tratamiento 2. Disección 3</td>
</tr>
<tr>
<td>Tratamiento 3. Disección 1</td>
<td>Tratamiento 3. Disección 2</td>
<td>Tratamiento 3. Disección 3</td>
<td>Tratamiento 3. Disección 4</td>
</tr>
</tbody>
</table>
En el tratamiento 7 no se encontraron colonias con la morfología de los probióticos.

7.4 Registros de desempeño

En las tablas siguientes se presentan los resultados obtenidos en la medición de parámetros biométricos realizados el día de inicio del seguimiento. Los peces fueron seleccionados aleatoriamente del lote inicial antes de ser ubicados en los correspondientes tratamientos. Los valores del Coeficiente de Variación (CV, %), cercanos y menores al 10% indican una elevada homogeneidad inicial de los lotes.
Tabla 7-2 Resumen de registros en longitud total (cm) de los peces al día de inicio del experimento

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONTROL</th>
<th>PROBIOTICO 1</th>
<th>PROBIOTICO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMEDIO</td>
<td>4.648<sup>a</sup></td>
<td>4.509<sup>b</sup></td>
<td>4.572<sup>b</sup></td>
</tr>
<tr>
<td>DESV EST</td>
<td>0.400</td>
<td>0.488</td>
<td>0.375</td>
</tr>
<tr>
<td>CV</td>
<td>8.62</td>
<td>10.82</td>
<td>8.20</td>
</tr>
<tr>
<td>MAXIMO</td>
<td>5.6</td>
<td>5.8</td>
<td>5.4</td>
</tr>
<tr>
<td>MINIMO</td>
<td>3.8</td>
<td>3.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Las letras en los superíndices de las filas indican diferencias significativas.

La eficiencia de la selección se evaluó mediante comparación por ANOVA; no se presentaron diferencias significativas entre la longitud total inicial de los peces que se destinaron a cada tratamiento (p = 0.136).

Tabla 7-3 Resumen de registros en peso (g) de los peces al día de inicio del experimento

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONTROL</th>
<th>PROBIOTICO 1</th>
<th>PROBIOTICO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMEDIO</td>
<td>1.636<sup>a</sup></td>
<td>1.46<sup>b</sup></td>
<td>1.48<sup>b</sup></td>
</tr>
<tr>
<td>DESV EST</td>
<td>0.415</td>
<td>0.510</td>
<td>0.335</td>
</tr>
<tr>
<td>CV</td>
<td>25.4</td>
<td>35.0</td>
<td>22.6</td>
</tr>
<tr>
<td>MAXIMO</td>
<td>2.9</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>MINIMO</td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Las letras en los superíndices de las filas indican diferencias significativas.

A diferencia de lo encontrado con la longitud total inicial, en el caso del peso se presentaron diferencias significativas entre los peces asignados a cada tratamiento, con los del grupo control mostrando el mayor valor. En términos de análisis se trata
de una circunstancia que debe ser considerada, pero que no limita las interpretaciones. En efecto, en la relación peso/longitud en los peces cada unidad de longitud significa el cubo de cada unidad en peso; por tanto, pequeñas variaciones en términos de longitud tienden a expresarse con mayor fuerza en el peso individual. Esto también explica el que los valores del CV sean más elevados con este parámetro que con la longitud.

De cualquier forma, como se verá, aunque se compararon los parámetros de longitud total y peso al día 45 del seguimiento, la valoración real del efecto del probiótico se fundamentó en el análisis sobre las diferencias entre cada parámetro en el día 1 y el día 45.

Tabla 7-4 Resumen de registros en longitud total (cm) de los peces al día 30 de seguimiento

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONTROL</th>
<th>PROBIOTICO 1</th>
<th>PROBIOTICO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMEDIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.924<sup>a</sup></td>
<td>6.949<sup>a</sup></td>
<td>6.862<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>DESV EST</td>
<td>0.776</td>
<td>1.133</td>
<td>0.946</td>
</tr>
<tr>
<td>CV</td>
<td>11.20</td>
<td>16.31</td>
<td>13.79</td>
</tr>
<tr>
<td>MAXIMO</td>
<td>8.5</td>
<td>8.8</td>
<td>9.5</td>
</tr>
<tr>
<td>MINIMO</td>
<td>5.5</td>
<td>4.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Las letras en los superíndices de las filas indican diferencias significativas
Con p = 0.9 y p = 0.82, se tiene que, al finalizar el periodo de seguimiento, tanto en longitud total como en peso, los grupos control y los de los tratamientos fueron estadísticamente iguales. Es decir, hasta ese momento no se demuestra el efecto de los probióticos en el desempeño de los peces.
8. Impacto e indicadores

La tilapia roja (*Oreochromis spp*), es una de las especies más cultivadas en el mundo y en Colombia se cultiva en la gran mayoría de las regiones, los piscicultores la prefieren por su rusticidad, resistencia y adaptabilidad a cualquier medio de cultivo. El departamento del Huila produce el 44,6% (AUNAP & FAO, 2014). La tilapia roja es un producto de consumo nacional y de exportación, los dos son multiplicadores de la economía local que contribuyen a la superación de la pobreza en las zonas rurales. Por esto la implementación de nuevas tecnologías para optimizar la producción, dando como resultado que el gobierno invierta el 10% del total de las regalías para que el fondo de ciencia y tecnología financie proyecto de investigación, promoviendo el desarrollo científico creando protocolos de estandarización de diagnósticos sanitarios para determinar enfermedades que se presentan en la acuicultura.

La acuicultura es una actividad productiva, la cual contribuye al desarrollo social en zonas rurales y marginales a través de empleos locales, también optimiza la economía y la seguridad alimentaria local, regional y nacional, con sistemas de producción rentables, para esto se promueven inversiones que general crecimiento en la oferta de los productos y los subproductos de la acuicultura, produciendo 82.733 toneladas las cuales el 50% son tilapia roja (*Oreochromis spp*) y nilótica (*Oreochromis nilóticus*). (AUNAP, 2013). Esto nos indica que se debe buscar diferentes formas para mejorar la producción de tilapia, puesto que los mayores problemas son por muertes por enfermedades patogénicas y una de las soluciones es combatirlas con bacterias benéficas que se encuentran en los probióticos como una alternativa menos costosa que los antibióticos.
9. CONCLUSIONES

- De acuerdo con los análisis se encantaron en los probióticos colonias de género *Bacillus* con características de coloración blanca y con diversas formas circulares de rizoides y con bordes enteros típicas de *Bacillus Subtilis* y *Bacillus Circulans* con lo cual se evidencia que los probióticos PondTos™ y FeedTreat™ la presencia de microrganismos benéficos para combatir enfermedades patógenas como *Aeromona Hydorphila* la cual causa lesiones severas en el intestino de los peces, cabe destacar que una de las funciones más importantes de los *Bacillus* es el desarrollo de enzimas digestivas teniendo una mayor absorción de nutrientes, haciendo que la conversión alimenticia disminuya.

- Concluyendo la reactivación de los probióticos in vitro y su respectivo análisis microbiológico se logró obtener una disolución de 0,1 % P/V, con una cantidad adecuada de 108 UFC/ g. De esta manera la formulación obtenida para ambos probióticos permitió adicionar al alimento de las tilapias, la cantidad necesaria de microrganismos suficiente para afectar de forma positiva sus parámetros de desempeño.

- La evaluación de crecimiento de los juveniles de tilapia roja (*Oreochromis spp*), el peso y la longitud promedio inicial tuvieron una diferencia significativa puesto que los juveniles de tratamiento control tenían un promedio más alto que los juveniles de los tratamientos con los probióticos 1 Pond Toss™ y 2 FeedTreat™. Los promedios finales tanto de peso como de longitud tuvieron una diferencia significativa con los juveniles tratados con el probiótico 1, a pesar de que los promedios no fueron homogéneos al inicio del ensayo. Los peces tratados con el probiótico 1 alcanzaron y superaron los promedios de los peces control, esto nos dice que la implementación de probióticos como Pond Toss™ nos da un beneficio en la producción de tilapia combatiendo
enfermedades patógenas que se presentan en el entorno y optimizando el crecimiento de los peces.

- Como conclusión se puede decir que en este ensayo al presentarse un crecimiento mayor a 10CiclosLOG para los dos probióticos dentro del intestino de los peces, para ser un tiempo muy corto la respuesta de los probióticos fue positiva la fijación tanto en el alimento por parte de estas bacterias benéficas.se comprueba con el desempeño del crecimiento de los peces trataos con el probiótico Pond TossTM, cabe destacar que se puede suministrar más días los probióticos para seguir el desempeño de los peces.
10. Bibliografía

AOAC. (2012). AOAC INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces. USA: AOAC INTERNATIONAL.

Flores, L. (2003). Aislamiento e identificacion de microorganismos nativos del tracto intetinal de la tilapia nilotica (Oreochromis niloticus) con potencial probioticos. México: IPN.

