Estudio comparativo entre la implementación de la zeolita y la resina de intercambio iónico en la remoción de hierro y dureza en un agua sintética que simula el agua para uso industrial

Efraín Antonio Duarte Valencia
Carlos Mario Vizcaíno Sánchez

Universidad de La Salle
Facultad de Ingeniería
Programa de Ingeniería Ambiental y Sanitaria
Bogotá D. C.
2015
Estudio comparativo entre la implementación de la zeolita y la resina de intercambio iónico en la remoción de hierro y dureza en un agua sintética que simula el agua para uso industrial

Efraín Antonio duarte Valencia

Carlos Mario Vizcaíno Sánchez

Trabajo de grado para optar al título de ingeniero ambiental y sanitario

Director:
Roberto Rafael Balda Ayala
Ingeniero de alimentos
Msc. Ingeniería sanitaria

Universidad de La Salle
Facultad de Ingeniería
Programa de Ingeniería Ambiental y Sanitaria
Bogotá D.C.
2015
Contenido

Resumen...XII

1. Introducción .. 15

2. Objetivos... 16

 2.1. Objetivo general ... 16

 2.2. Objetivos específicos ... 16

3. Antecedentes ... 17

4. Marco Teórico ... 20

 4.1. Dureza en el agua. .. 20

 4.1.1. Tipos de dureza ... 20

 4.1.2. Medida de la dureza .. 21

 4.1.3. Clasificación del agua según su dureza. ... 22

 4.1.4. Consecuencias de la dureza en el agua industrial ... 22

 4.2. Hierro en el agua ..-------- 23

 4.2.1. Clasificación del agua según su concentración de hierro ... 24

 4.2.2. Hierro en aguas de uso industrial .. 25

 4.2.3. Eliminación de hierro en el agua ... 25

 4.3. Intercambio iónico .. 26

 4.3.1. Condiciones que afectan el intercambio iónico ... 27
4.3.2. Resinas de intercambio iónico ... 27
4.3.3. Tipos de resina de intercambio iónico ... 28
4.3.4. Regeneración de intercambiadores de iones .. 30
4.3.5. Ventajas de la regeneración en contracorriente. 30
4.4. Zeolita .. 31
 4.4.1. Capacidad intercambio en zeolitas .. 32
 4.4.2. Aplicaciones de la zeolita. ... 32
5. Metodología .. 34
 5.1. Fase 1. Diseño y construcción de las unidades piloto. 34
 5.2. Fase 3. Pruebas de remoción de dureza y hierro 44
 5.3. Fase 4. Lectura de las muestras .. 47
6. RESULTADOS Y ANÁLISIS ... 50
 6.1. Comportamiento de la dureza en el intercambiador con zeolita 50
 6.2. Comportamiento del hierro en el intercambiador con zeolita 52
 6.3. Comportamiento de dureza en el intercambiador con resina de intercambio iónico 55
 6.4. Comportamiento del hierro en el intercambiador con resina de intercambio iónico 59
 6.5. Análisis estadístico por el método ANOVA .. 65
 6.6. Agotamiento de la capacidad de intercambio catiónico 70
 6.7. Análisis Costo/Beneficio ... 71
6.7.1. Descripción de las alternativas... 71
6.7.2. Identificación de costos.. 71
6.7.3. Identificación de Beneficios ... 74
6.7.4. Cálculo de la relación beneficio/costo. ... 76
7. CONCLUSIONES.. 79
8. RECOMENDACIONES.. 81
9. Bibliografía... 82
Lista de tablas

Tabla 1 Clasificación del agua según su dureza ... 22

Tabla 2 Concentración máxima de hierro total en calderas tubulares según la presión en el tambor. ... 24

Tabla 3 Concentración de hierro y dureza en el agua del acueducto de Bogotá 38

Tabla 4 Resultado para la concentración de dureza baja en el prototipo de zeolita con carga hidráulica alta... 50

Tabla 5 Resultado para la concentración de dureza media en el prototipo de zeolita con carga hidráulica alta... 50

Tabla 6 Resultado para la concentración de dureza alta en el prototipo de zeolita con carga hidráulica alta.. 51

Tabla 7 Resultado para la concentración de dureza baja en el prototipo de zeolita con carga hidráulica baja.. 51

Tabla 8 Resultado para la concentración de dureza media en el prototipo de zeolita con carga hidráulica baja.. 52

Tabla 9 Resultado para la concentración de dureza alta en el prototipo de zeolita con carga hidráulica baja.. 52

Tabla 10 Resultado para la concentración de hierro baja en el prototipo de zeolita con carga hidráulica alta...

Tabla 11 Resultado para la concentración de hierro media en el prototipo de zeolita con carga hidráulica alta...

Tabla 12 Resultado para la concentración de hierro alta en el prototipo de zeolita con carga hidráulica alta...
Tabla 13 Resultado para la concentración de hierro baja en el prototipo de zeolita con carga hidráulica baja. ... 54

Tabla 14 Resultado para la concentración de hierro media en el prototipo de zeolita con carga hidráulica baja. ... 54

Tabla 15 Resultado para la concentración de hierro alta en el prototipo de zeolita con carga hidráulica baja. ... 55

Tabla 16 Resultado para la concentración de dureza baja en el prototipo de resina con carga hidráulica alta. ... 55

Tabla 17 Resultado para la concentración de dureza media en el prototipo de resina con carga hidráulica alta. ... 56

Tabla 18 Resultado para la concentración de dureza alta en el prototipo de resina con carga hidráulica alta. ... 56

Tabla 19 Resultado para la concentración de dureza baja en el prototipo de resina con carga hidráulica baja. ... 58

Tabla 20 Resultado para la concentración de dureza media en el prototipo de resina con carga hidráulica baja. ... 58

Tabla 21 Resultado para la concentración de dureza alta en el prototipo de resina con carga hidráulica baja. ... 59

Tabla 22 Resultado para la concentración de hierro baja en el prototipo de resina de intercambio iónico con carga hidráulica alta. ... 59

Tabla 23 Resultado para la concentración de hierro media en el prototipo de resina de intercambio iónico con carga hidráulica alta. ... 60

Tabla 24 Resultado para la concentración de hierro alta en el prototipo de resina de intercambio iónico con carga hidráulica alta. ... 60
Tabla 25 Resultado para la concentración de hierro baja en el prototipo de resina con carga hidráulica baja. ... 61

Tabla 26 Resultado para la concentración de hierro media en el prototipo de resina con carga hidráulica baja. ... 61

Tabla 27 Resultado para la concentración de hierro alta en el prototipo de resina con carga hidráulica baja. ... 61

Tabla 28 Análisis descriptivo de los datos. ... 66

Tabla 29 Resultados de las pruebas de efectos inter-sujetos. .. 68

Tabla 30 Resumen del reporte de las pruebas de capacidad de intercambio catiónico. 70

Tabla 31 Descripción de las características técnicas de los componentes de las alternativas utilizadas. ... 71

Tabla 32 Costos de inversión.. 72

Tabla 33 Costos de Insumos. ... 72

Tabla 34 Costos de Energía Eléctrica ... 73

Tabla 35 Costos de Mantenimiento. ... 73

Tabla 36 Hoja de cálculo para intercambiador con resina de intercambio iónico. 86

Tabla 37 Calculo preparar el agua con la concentración "media" de dureza................................. 88

Tabla 38 Calculo preparar el agua con la concentración "alta" de dureza................................. 89

Tabla 39 Calculo preparar el agua con la concentración "media" de hierro............................... 90

Tabla 40 Calculo preparar el agua con la concentración "alta" de hierro............................... 91

Tabla 41 Costo infraestructura de una unidad piloto ... 94
Tabla 42 Cálculo de la cantidad y costo de regenerante para la unidad con zeolita.................... 95
Tabla 43 Cálculo de la cantidad y costo de regenerante para la unidad con zeolita.................... 95
Tabla 44 Cálculo de la cantidad de kilovatios anuales y su costo. ... 96
Tabla 45 Costo metro cubico de agua tratada para la unidad con zeolita................................. 97
Tabla 46 Costo metro cubico de agua tratada por la unidad con resina. 97
Agradecimientos

Primero a Dios, porque sin la ayuda de él nada sería posible; a mis padres, porque gracias a su apoyo he podido superar diferentes obstáculos y obtener muchos éxitos en mi vida; a Viviana, Mauricio y Juan, por ser mi hogar y familia en Bogotá; A Roberto Balda quien fue mi director de tesis y además me brindo su amistad; por último a mis amigos y a todas las personas que contribuyeron de alguna forma para que esto se convirtiera en realidad.

Carlos Vizcaíno.

Quiero agradecerle en primer lugar a Dios que me dio la fortaleza y la voluntad para seguir adelante, a mis padres que siempre me han apoyado incondicionalmente y siempre han estado cuando los he necesitado, al ingeniero Roberto Balda mi director de tesis sin el cual no sería posible este logro y a todos mis docentes quienes compartieron sus conocimientos de los cuales me llevo lo mejor de ellos para aplicarlo en mi vida profesional.

Efraín Duarte.
Glosario

- **Capacidad de intercambio (CIC):** Media de la capacidad de un material para retener iones, expresado en meq/100 g o g/l.

- **Incrustaciones:** Depósitos de iones de calcio (Ca) y magnesio (Mg), que forman placas dentro de la maquinaria industrial.

- **Intercambio iónico:** Operación de separación basada en la transferencia de materia liquido-sólido.

- **Medio intercambiador de iones:** En el cual se lleva a cabo el proceso de intercambio de iones.

- **Regeneración:** Proceso por el cual se hace pasar un caudal de entrada con una salmuera, la cual realiza el intercambio de iones presentes en el medio haciendo que este regrese a su estado original.

- **Resina de intercambio iónico:** Materiales sintéticos, insolubles macromoleculares que poseen una estructura tridimensional que contiene grupos iónicos.

- **Salmuera:** Agua con una alta concentración de sal (NaCl) disuelta.

- **Sarro:** Acumulación de sales minerales dentro de la maquinaria industrial.

- **Tamiz iónico:** Medio que presenta afinidad para retener iones disueltos.

- **Zeolita:** Aluminosilicatos hidratados originados por fenómenos geológicos de transformación como resultado de una reacción con aguas alcalinas de cenizas volcánicas.
Resumen

En la actualidad el agua para uso industrial es sometida a diferentes mecanismos para garantizar que sus características físico-químicas permitan su utilización en los diferentes procesos productivos como por ejemplo, una baja concentración de iones de dureza y hierro, toda vez que éstos pueden deteriorar los equipos industriales presentándose en ellos incrustaciones o corrosiones indeseables. El método más empleado hoy en día para remover dichos iones es el intercambio iónico, por lo que se plantea, en el presente proyecto, comparar la resina de intercambio con un intercambiador con zeolita. Para lograr los objetivos propuestos en el proyecto y la comparación de las dos alternativas, se realizó una metodología dividida en 4 fases que se describen a continuación: una primera fase en la que se diseñaron dos unidades piloto, teniendo como referencia de diseño los intercambiadores con resina de intercambio catiónico. Posteriormente se le agregó a uno de los prototipos zeolita natural y al otro resina de intercambio iónico. En una segunda fase, se prepararon las muestras de agua a tratar con agua del acueducto de Bogotá y se impactó con sulfato de hierro para aumentar la concentración de hierro a niveles de 0.1-0.3 mg/l (bajo), 2-4 mg/l (medio) y 8-10mg/l (alto). Para impartirle la dureza al agua se utilizó cloruro de calcio hasta llegar a valores de 30-80 mg CaCO₃/l (bajo), 140-170 mg CaCO₃/l (medio) y 480-550 mg CaCO₃/l (alto). Los reactivos que se utilizaron fueron de tipo analítico para evitar interferencias. Adicional a esto se verificó que el agua no presentara cloro residual. En la tercera fase se procedió a pasar las muestras de agua a través de cada uno de los prototipos con una carga hidráulica de 25 m³/m².h y al finalizar cada prueba se regeneró en contra-corriente el material intercambiador con NaCl; luego se repitió el procedimiento con las mismas concentraciones de dureza y hierro, pero se disminuyó la carga hidráulica a 6 m³/m².h. Por último, se realizaron los análisis correspondientes para determinar hierro y dureza al efluente. Los resultados obtenidos durante el desarrollo del proyecto mostraron que de los tres parámetros que se evaluaron (TRATAMIENTO, CARGA y CONCENTRACION), el parámetro de carga no presentó una influencia significativa en la remoción de los iones. Así mismo se observó que la resina de intercambio iónico presenta una mayor afinidad de remoción con los iones contaminantes. También se apreció que el tiempo de agotamiento de la zeolita es más corto que
el que presenta la resina de intercambio iónico; por lo anterior los costos de regeneración de la zeolita son mayores.
Abstract

At present, industrial´s water is subjected to various mechanisms to ensure their physical and chemical characteristics allow its use in the different production processes such as a low concentration of hardness and iron ions, since these can damage the industrial equipment presenting them undesirable fouling or corrosion. The method most commonly used today to remove these ions is ion exchange, therefore arises, in this project, comparing the exchange resin with an exchanger with zeolite. A first phase in which two pilot units were designed with reference design exchangers with: To achieve the objectives proposed in the project and comparison of the two alternatives, a methodology divided into 4 phases described below are made cation exchange resin. He was later added to one of the natural zeolite prototypes and other ion exchange resin. In a second phase, water samples treated with water from the aqueduct of Bogota and hit with iron sulphate to increase the iron concentration levels of 0.1-0.3 mg / L (low) were prepared, 2-4 mg / l (average) and 8-10mg / l (high). To impart hardness to water calcium chloride was used up to values of 30-80 mg CaCO3 / L (low), 140-170 mg CaCO3 / l (middle) and 480-550 mg CaCO3 / l (high). The reagents used were of analytical type to avoid interference. In addition to this it was found that the water did not present residual chlorine. In the third phase we proceeded to pass water samples through each of the prototypes with a hydraulic load of 25 m3 / m2h and after each test was regenerated in counter-current exchanger material NaCl; then the process with the same hardness and iron concentrations was repeated, but the hydraulic load to 6 m3 / m2.h was decreased. Finally, the data was analyzed to determine the iron and hardness effluent. The results obtained during the project showed that of the three parameters (treatment, loading and concentration) were evaluated, the load parameter did not show a significant influence on the removal of ions. Also it was observed that the ion exchange resin has a higher affinity with the contaminant ions removal. It was also noted that the expiration time for the zeolite is shorter than the one with the ion exchange resin; Therefore the costs of regeneration of the zeolite are higher.
1. Introducción

En Colombia el tratamiento que recibe el agua de uso industrial para remover dureza y hierro, generalmente está asociado con el empleo de resinas de intercambio iónico y, aunque existen otras alternativas que presentan gran potencial en la remoción de dichos iones, no se implementan por su poco conocimiento en su eficiencia y parámetros de diseño como es el caso de las zeolitas naturales.

En el proyecto se describen las propiedades de la Resina de intercambio iónico y la Zeolita natural. Además, se menciona cómo las aguas industriales con presencia de hierro y dureza pueden llegar a causar problemas de incrustaciones y corrosión en la maquinaria empleada. Además, se detalla como la zeolita y la resina de intercambio iónico pueden remover estos contaminantes.

Posteriormente se puede observar la metodología que se utilizó para el diseño de las unidades piloto y las pruebas de remoción de dureza y hierro con las dos alternativas (Resina de intercambio iónico y Zeolita). Y se calculó la capacidad de intercambio de cada uno de los medios de intercambio iónico (resina de intercambio catiónico y zeolita natural) antes y después de su uso.

El análisis de los resultados de las pruebas se realizó por medio del modelo estadístico ANOVA. Adicional, se hizo un estudio beneficio-costo de cada una de las alternativas de remoción en el cual se estudiaron parámetros como: Costos de inversión, costos de insumos, costos de energía eléctrica, costos de mantenimiento y los beneficios que las alternativas presentan.
2. Objetivos

2.1. Objetivo general

Realizar un estudio comparativo del uso de zeolita y la resina de intercambio iónico para remoción de hierro y dureza en agua del acueducto de Bogotá impactada con dureza y hierro simulando un agua para uso industrial.

2.2. Objetivos específicos

- Estudiar el comportamiento de la resina de intercambio iónico y la zeolita al contacto con agua del acueducto de Bogotá impactada con dureza a tres diferentes concentraciones (Baja 30 – 80 mg/L, media 140 – 170 mg/L y alta 480 – 550 mg/L de CaCO3).

- Estudiar el comportamiento de la resina de intercambio iónico y la zeolita al contacto con agua del acueducto de Bogotá impactada con hierro a tres diferentes concentraciones (Baja 0,1 – 0.3 mg/L, media 2 – 4 mg/L y alta 8 – 10 mg/L).

- Comparar el comportamiento hidráulico de la zeolita y de la resina de intercambio iónico al contacto con el agua sintética.

- Establecer la relación beneficio – costo del uso de la zeolita y la resina de intercambio iónico para la remoción de hierro y dureza.
3. Antecedentes

La remoción de dureza y hierro por medio de las zeolitas naturales es un tema que ha sido objeto de muchos estudios, a nivel nacional e internacional, cuya mayoría han sido enfocados en la purificación de aguas para el consumo humano, ya que por sus propiedades fisicoquímicas, presenta afinidad para realizar intercambio iónico con algunos íones presentes en el agua. La zeolita se considera un filtro mineral por sus características de tamiz molecular y sus propiedades de adsorción; además su reacción química es reversible y esta puede ser reutilizada luego del proceso de regeneración. Por lo anterior, la zeolita sigue siendo estudiada en diferentes campos, como los estudios que se mencionan a continuación.

Flores, C; Ramírez, R & Durán, A (2002) llevaron a cabo la evaluación del proceso de intercambio iónico para eliminar nitrógeno amonio en efluentes de aguas residuales tratadas por clarificación y adsorción. El trabajo se realizó mediante pruebas de laboratorio donde se emplearon mini-columnas construidas en pirex. Estos dispositivos se empañaron con 20 g de dos tipos diferentes de intercambiadores iónicos para la eliminación de nitrógeno amoniacal, una de tipo comercial (amberlite IR-120, ROHM HAAS) y otra de tipo natural o zeolita (clinoptilolita de Oaxaca). La alimentación del afluentes se realizó con un contenido amoniacal entre 20 y 25 mg/L; éste se hizo en forma ascendente con dos flujos distintos para simular tiempos de contacto de 6 y 10 min. Mediante un análisis gráfico para los tiempos de contacto evaluados se determinó que la resina de intercambio iónico comercial presentaba una mejor eficiencia con respecto a la natural entre el 10 y el 50 %. La eficiencia de remoción de amoniacal aumentó de manera proporcional en función del tiempo de contacto para las dos resinas de intercambio iónico utilizadas.

Acevedo, D; Builes, S; Ordóñez, C & López, I (2011) realizaron una investigación en la que eliminaron metales pesados (plomo, níquel, cromo, cadmio y mercurio) presentes en una solución compuesta por licor mixto proveniente de la planta de tratamiento de aguas residuales de San Fernando y una solución preparada con metales pesados con una concentración conocida, mediante el uso de una batería de filtros empacados en zeolita clinoptilolita. La experimentación
se desarrolló bajo condiciones controladas de caudal y pH, a temperatura ambiente. Se encontró que la eficiencia de los filtros bajo las condiciones específicas de diseño es significativamente alta en la remoción de los metales pesados evaluados en la solución acuosa. Además se determinó que, sin importar el valor de la concentración inicial, la remoción de los metales era importante luego de pasar por los filtros, presentando una mayor eficiencia en la remoción del mercurio.

El Instituto de Ingeniería, Universidad Nacional Autónoma de México, por medio de Pavón T., Briones R., e Ilangoan K. (2003) realizó un estudio con la zeolita tipo clinoptilolita recolectada en el Estado de Oaxaca, México, el cual demostró que esta era una alternativa atractiva para remover iones del agua potable mediante un proceso de intercambio iónico. Este estudio muestra la selectividad de la zeolita para los cationes plomo, cadmio, zinc, hierro, níquel y cobre en pruebas en lote y en continuo para un ámbito de pH entre 4.0 y 5.0, a dos intervalos de temperatura ambiente (17-23 °C) y 35 °C. Para las pruebas en lote se emplearon concentraciones de 0.01, 0.03, 0.05, 0.2, 0.4, 0.6, 0.8 y 1.0N de cada uno de los metales en estudio. De estos metales el plomo presentó mayores eficiencias de remoción, del orden del 99%, para las concentraciones de 0.01N y 0.03N, sin manifestar influencia por temperatura. En el caso del níquel, hierro y zinc a concentraciones de 0.4 y 0.6N se presentaron efectos muy marcados con respecto a la temperatura. De los resultados obtenidos de estas pruebas, se deduce que la selectividad de la zeolita para los iones involucrados es:

\[
\text{Pb}^{2+} > \text{Cd}^{2+} > \text{Fe}^{2+} > \text{Cu}^{2+} > \text{Zn}^{2+} > \text{Ni}^{2+}
\]

Los estudios en columna para el caso anterior, se realizaron a tres diferentes regímenes de flujo 2,4 y 8 BV/h\(^1\), logrando mejores eficiencias de remoción al menor flujo. Las condiciones de regeneración se evaluaron a 4,8 y 16 BV/h con cloruro de sodio a una concentración de 4N con buenos resultados a las seis horas de operación.

\(^1\) BV/h= Bed volume per hour (del inglés), o sea, volumen de lecho por hora.
En pruebas con mezclas binarias y terciaria de los cationes plomo, cadmio y hierro, se comprobó que el plomo se removía fácilmente del agua aún en presencia de otros cationes.

La capacidad de intercambio catiónico (CEC) teórica determinada a partir de la fórmula de la clinoptilolita es de 2.56 meq/100g, sin embargo, se obtuvieron las capacidades de intercambio de la zeolita para cada uno de los cationes empleados.

En la actualidad las resinas de intercambio iónico son las más utilizadas para la remoción de iones por su alta eficiencia, puesto que sus parámetros de diseño ya están establecidos por sus fabricantes; sin embargo las zeolitas se constituyen como una alternativa para la remoción de iones, de la cual se tiene información respecto al material, pero no de sus parámetros de diseño. Por esto lo que se busca en el presente proyecto es establecer estos parámetros partiendo de los experimentos establecidos para este fin.
4. Marco Teórico

4.1. Dureza en el agua.

El agua posee innumerables compuestos o elementos que le imparten determinadas características, ya sea para beneficio o en detrimento de su calidad. Estos elementos permiten que el agua varíe en sus propiedades fisicoquímicas diferenciándola mediante sus aspectos, tales como color, turbidez, conductividad, pH, dureza, entre otros.

La dureza en el agua se debe a la presencia de minerales de calcio y magnesio los cuales están naturalmente presentes en el agua; ésta es formada cuando el agua pasa a través de piedras calizas y los iones de calcio y magnesio presentes en estas superficies se disuelven en ella (U.S. Geological Survey, 2014). Además del calcio y el magnesio otras sustancias aportan a la dureza, como: El estroncio, hierro, manganeso, bario y otros iones polivalentes, los cuales se combinan con aniones como el sulfato, cloruro, nitrato y bicarbonato. (Neira, 2006).

4.1.1. Tipos de dureza

La dureza se puede catalogar de dos maneras: Dureza temporal y dureza permanente.

4.1.1.1. Dureza temporal

La dureza temporal se debe a los bicarbonatos y carbonatos de calcio y magnesio y puede eliminarse de varias maneras; una, por ebullición esto debido a que el carbonato de calcio es menos soluble en agua caliente que en agua fría, así que al hervir se precipitará el bicarbonato de calcio fuera de la solución, dejando el agua menos dura (Rodriguez & Rodriguez, 2010). Otra forma de eliminación es por adición de hidróxido de calcio (Ca(OH)₂), proceso en el cual se llevan a cabo las siguientes reacciones (Espigares & Pérez, s.f.):

\[CO_2 + Ca(OH)_2 \rightarrow CO_3 + H_2O \]
(2) \((\text{CO}_3\text{H})_2\text{Ca} + \text{Ca(OH)}_2 \rightarrow \text{CO}_3\text{Ca} \downarrow + \text{H}_2\text{O}\)

(3) \((\text{CO}_3\text{H})_2\text{Mg} + \text{Ca(OH)}_2 \rightarrow \text{CO}_3\text{Ca} + \text{CO}_3\text{Mg}.2\text{H}_2\text{O}\)

\(\text{CO}_3\text{Mg} + \text{Ca(OH)}_2 \rightarrow \text{Mg(OH)}_2\downarrow + \text{CO}_3\text{Ca}\downarrow\)

(4) \(\text{SO}_4\text{Mg} + \text{Ca(OH)}_2 \rightarrow \text{Mg(OH)}_2\downarrow + \text{SO}_4\text{Ca}\)

\(\text{Cl}_2\text{Mg} + \text{Ca(OH)}_2 \rightarrow \text{Mg(OH)}_2\downarrow + \text{Cl}_2\text{Ca}\)

4.1.1.2. Dureza permanente.

La dureza permanente se conoce también como dureza residual o dureza no carbónica. Ésta es causada por la presencia del sulfato de calcio y magnesio, y/o cloruros en el agua; los cuales son más solubles mientras sube la temperatura hasta cierto valor; luego, la solubilidad disminuye conforme aumenta la temperatura. Las aguas que poseen esta dureza pueden ablandarse añadiendo carbonato de sodio y cal, o filtrándolas a través de intercambiadores de iones naturales o sintéticos, los cuales cambian los iones metálicos que producen dureza por iones de sodio (Rodríguez & Rodríguez, 2010).

4.1.2. Medida de la dureza

Usualmente la dureza se expresa en términos de miligramos de carbonato de calcio (\(\text{CaCO}_3\)) por litro o partes por millón, pero existen otras unidades de medida que se utilizan en distintos países como: Grado Alemán (°D), Grado Francés (°F) y Grado Ingles (°E), y sus equivalencias son las siguientes (Neira, 2006):

\[^{\circ}\text{D}= 17.85\text{ mg CaCO}_3/\text{L}\]

\[^{\circ}\text{F}= 10.00\text{ mg CaCO}_3/\text{L}\]
4.1.3. Clasificación del agua según su dureza.

El agua según su concentración de carbonato de calcio se puede clasificar en niveles de dureza. Sin embargo, hay que aclarar que el concepto de “aguas dura” varía dependiendo del uso que se le va a dar al agua; por ejemplo, para consumo humano, la normatividad Colombiana acepta valores hasta 300 mg/L de CaCO₃ (Resolución 2115 del 2007, Ministerio de la protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial), mientras que para uso industrial, en equipos que manejan intercambio de calor, la dureza no debe superar los 2mg/L de CaCO₃ (Norma Británica BS-2486), y Kunin en su estudio “Ablamiento del agua por intercambio iónico” clasifica el agua según su dureza como se muestra en la Tabla 1.

<table>
<thead>
<tr>
<th>Rango de Dureza (mg CaCO₃/L)</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 50</td>
<td>Suave</td>
</tr>
<tr>
<td>50 a 100</td>
<td>Moderadamente suave</td>
</tr>
<tr>
<td>100 a 150</td>
<td>Ligeramente dura</td>
</tr>
<tr>
<td>150 a 200</td>
<td>Moderadamente dura</td>
</tr>
<tr>
<td>200 a 300</td>
<td>Dura</td>
</tr>
<tr>
<td>>300</td>
<td>Muy dura</td>
</tr>
</tbody>
</table>

4.1.4. Consecuencias de la dureza en el agua industrial

El agua es necesaria en casi todas las operaciones industriales, pero sólo en algunas situaciones es posible utilizarla tal y como se extrae. Si no se toman las precauciones necesarias para eliminar los contaminantes, estos pueden afectar gravemente a los equipos y/o a los productos.
La dureza en el agua hace que minerales como el calcio y el magnesio generen incrustaciones al interior de las tuberías o equipos industriales y posteriormente den formación al “sarro”. Éste genera grandes pérdidas económicas a la industria porque obstruye y deteriora cañerías, calderas, calentadores de agua, termo-tanques, lavavajillas, cafeteras, torres de enfriamiento y cualquier otro sistema o electrodoméstico que utilice agua caliente, además, mancha y dificulta la limpieza de grifería, vajilla, vidrios, ropa, piscinas, jacuzzis, cerámicas, bañeras, etc. En calderas y sistemas enfriados por agua se producen incrustaciones en las tuberías y una pérdida en la eficiencia de la transferencia de calor. En algunos casos las tuberías y maquinarias de las industria tienen que ser remplazadas lo que genera un sobre costo en su producción (Rodriguez & Rodriguez, 2010).

4.2. Hierro en el agua

El hierro es el segundo metal más abundante en la corteza de la tierra, de la cual representa aproximadamente el 5% (World Health Organization, 1996). El hierro se hace presente en el agua cuando ésta pasa a través del suelo y rocas que contienen este mineral y éste se disuelve en el agua. Ocasionalmente, las tuberías de hierro también son fuente de hierro en el agua (Dvorak, 2014).

El hierro en aguas puede ser removido por medio de un ablandador de aguas como los intercambiadores de iones, en los cuales los iones de hierro presentes en el agua se intercambian por iones de sodio (McFarland & Dozier, 2004). Además de la técnica anterior, existen otras como: Oxidación - filtración, aireación – filtración, filtración en medios acondicionados, filtración directa con la aplicación de sustancias químicas, estabilización por secuestro, métodos biológicos y remoción in-situ, para remover el hierro del agua (Red Iberoamericana de Potabilización de agua y Depuración del agua, 2009).
4.2.1. Clasificación del agua según su concentración de hierro

Según la normatividad colombiana (resolución 2115 de 2007) el agua apta para consumo humano es aquella que tiene un valor máximo de 0.3 mg/L de hierro total (Ministerio de la Protección Social y Ministerio de Ambiente Vivienda y Desarrollo territorial, 2007), para uso industrial la norma británica recomienda un valor menor a 0.05 mg/L para el agua de alimentación de una caldera de baja presión (British Standards Institution, 1997) y la ASME (American Society of Mechanical Engineers) en su guía para calidad de agua en calderas tubulares en la industria moderna recomienda distintas concentraciones de hierro dependiendo de la presión en el tambor con la que trabaja la caldera (ver Tabla 2) (American Society of Mechanical Engineers, s.f.).

Tabla 2 Concentración máxima de hierro total en calderas tubulares según la presión en el tambor.

<table>
<thead>
<tr>
<th>Agua de alimentación para caldera</th>
<th>Presión del tambor (psi)</th>
<th>Hierro total (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-300</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>301-450</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>451-600</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>601-750</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>751-900</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>901-1000</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>1001-1500</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>1501-2000</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fuente: (American Society of Mechanical Engineers, s.f.)
4.2.2. Hierro en aguas de uso industrial

El hierro en aguas industriales genera incrustaciones en el interior de la maquinaria y las tuberías de uso industrial, produciendo éstas obstrucciones. Esto hace que se restrinja el flujo de agua dentro de las tuberías. Como consecuencia de lo anterior las bombas encargadas de mantener un flujo de agua hacia los procesos tienen un mayor desgaste y utilizan más energía. Otra consecuencia del hierro en las aguas de uso industrial es el deterioro de la maquinaria utilizada en los diferentes procesos de producción. Además, puede hacer que el pH de estas aguas se disminuya. Estas variaciones de pH pueden causar problemas en los diferentes equipos utilizados en los procesos de producción y en el producto final. En las industrias que utilicen calderas, la presencia de óxidos de hierro ocasiona una mala trasmisión del calor y un potencial para la ruptura de los tubos de la misma debido a las elevadas temperaturas que en esta unidad se manejan (McFarland & Dozier, 2004).

4.2.3. Eliminación de hierro en el agua

En la actualidad existen diferentes técnicas para la remoción de hierro en el agua, a continuación se mencionan algunas de las más conocidas.

4.2.3.1. Eliminación de hierro en el agua por oxidación química

Este método es generalmente implementado cuando el hierro está combinado con materia orgánica o existen bacterias de hierro presentes. El método consiste en agregar una sustancia química oxidante, la cual puede ser cloro o permanganato de potasio. El químico oxidante debe estar en el agua por lo menos durante veinte minutos para que se lleve a cabo el proceso de oxidación, o por más tiempo si el agua tiene hierro coloidal. Después de que las partículas sólidas se han formado, éstas son filtradas, usualmente con filtros de arena. El agregar sulfato de aluminio mejora la filtración al causar que se formen partículas más grandes (McFarland & Dozier, 2004). A continuación se muestran las reacciones de oxidación al utilizar cloro y permanganato de potasio, por separado (Avendaño, s.f.).
Reacción química para la oxidación química con Permanganato de potasio

\[4\text{Fe}^{2+} + \text{KMnO}_4 + 7\text{H}_2\text{O} \rightarrow 3\text{Fe(OH)}_3 + \text{MnO}_2 + \text{K}^+ + 5\text{H}^+\]

Reacción química para la oxidación química con Cloro

\[2\text{Fe}^{2+} + \text{Cl}_2 + 6\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_3 + \text{MnO}_2 + 2\text{Cl}^- + 6\text{H}^+\]

4.2.3.2. Eliminación de hierro en el agua por aireación

El proceso de aireación se recomienda para aguas con altas concentraciones de hierro con el fin de disminuir costos en reactivos. El equipo usado en este proceso incluye generalmente un aireador, un tanque de retención y filtros. El aireador lo que hace es en inyectarle al agua para que el oxígeno reaccione con las formas solubles del hierro (Fe\(^{2+}\)) y produzca Fe\(^{3+}\), el cual es insoluble en el agua y así poder filtrarlo posteriormente. La velocidad de reacción depende del pH de la solución, siendo más rápida a valores de pH altos (Sommerfeld, 1999). Según Petrusevki, B (2003) la reacción que explica el proceso químico llevado a cabo, se muestra a continuación.

Reacción química del proceso para la eliminación de hierro por aireación

\[4\text{Fe}^{2+} + \text{O}_2 + 10\text{H}_2\text{O} \rightarrow 4\text{Fe(OH)}_3 + 8\text{H}^+\]

4.3. Intercambio iónico

El intercambio iónico es una operación de separación basada en la transferencia de materia líquido-sólido. Lo anterior implica la transferencia de uno o más iones de la fase liquida a la fase sólida por intercambio o desplazamiento de iones de la misma carga, los cuales se encuentran unidos por fuerzas electrostáticas a grupos funcionales superficiales. La eficacia del proceso depende del equilibrio sólido-líquido y de la velocidad de transferencia de materia. Los sólidos
suelen ser de tipo polimérico, siendo los más habituales, los basados en resinas de intercambio iónico sintéticas (Universidad autónoma de Madrid, 2006).

El intercambio iónico también puede explicarse como una reacción reversible con cantidades químicamente equivalentes. Un ejemplo común del intercambio catiónico es la reacción para el ablandamiento del agua:

\[
Ca^{++} + 2NaR \leftrightarrow CaR + 2Na^+
\]

Donde R representa un lugar estacionario aniónico univalente en la malla del polielectrolito de la fase intercambiador (Universidad autonoma de Madrid, 2006).

4.3.1. Condiciones que afectan el intercambio iónico

Las reacciones de intercambio iónico dependen de factores tales como: 1) temperatura: los cambios bruscos de ésta pueden provocar variaciones de las condiciones hidráulicas y en la cinética de las reacciones; si éstos se producen, se deben efectuar ajustes de los flujos y a temperaturas bajas se pueden originar caídas de presión; 2) la concentración de la especie en solución: puesto que a una mayor concentración en la solución de entrada se presentará una saturación más temprana, que a una concentración de solución de entrada menor; 3) naturaleza del ion: esto debido a que algunos intercambiadores de iones presentan una mayor selectividad hacia iones específicos; 4) pH: este factor afectará la reacción de intercambio dependiendo del tipo de intercambiador; si éste es fuerte, operará a cualquier pH, pero si es débil, solo ocurrirá el intercambio con un pH específico (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, 2009)

4.3.2. Resinas de intercambio iónico

Las resinas de intercambio iónico son materiales insolubles macromoleculares que poseen una estructura tridimensional que contiene grupos iónicos (Brown & Salle, 1997). Estas tienen la
capacidad de eliminar selectivamente los iones disueltos, mantenerlos temporalmente unidos en combinación química y cederlos de nuevo frente a una solución regenerante. Su comportamiento es similar al de un electrolito cualquiera, con la particularidad que todos los grupos reactivos están unidos a un polímero insoluble que forma la matriz de la resina de intercambio iónico (Rigola, 1990).

4.3.3. **Tipos de resina de intercambio iónico**

En la actualidad se conocen muchos tipos de resinas de intercambio iónico, pero éstas se clasifican en cuatro grupos generales: Resinas catiónicas de ácido fuerte, resinas catiónicas de ácido débil, resinas aniónicas de base fuerte y resinas aniónicas de base débil, las cuales se mencionan a continuación.

4.3.3.1. **Resinas catiónicas de ácido fuerte**

Las resinas catiónicas fuertemente acidas derivan su funcionalidad de los grupos ácidos sulfónicos. Estos intercambiadores catiónicos de ácido fuerte funcionan a cualquier pH, dividen todas las sales y requieren una gran cantidad de regenerante. Esta es la resina que se escoge para casi todas las aplicaciones de suavizado y como primera unidad en un desmineralizador de dos lechos, o como componente catiónico de un lecho mixto (Avila J, 1999).

4.3.3.2. **Resinas catiónicas de ácido débil**

Las resinas catiónicas de ácido débil contienen grupos carboxílicos como sitios de intercambio. La resina es altamente eficiente, ya que es regenerada con casi 100% de la cantidad estequiométrica de ácido, comparado con el 200% a 300% requerido para los cationes de ácido fuerte. Las resinas catiónicas débiles están sujetas a una menor capacidad por un aumento en la velocidad de flujo, en temperaturas bajas, y con una relación entre la dureza y la alcalinidad menor de 1.0. Se utilizan muy efectivamente en combinación con una resina catiónica de ácido fuerte, ya sea en configuración de lecho separado o lecho estratificado. En ambos casos, el agua de entrada se pone en contacto con la resina catiónica de ácido débil donde se eliminan los
cationes que están asociados con la alcalinidad. Los cationes restantes son eliminados por la resina catiónica de ácido fuerte. La resina catiónica de ácido débil es regenerada con el ácido de desecho de la unidad de ácido fuerte, proporcionando un arreglo muy económico (Avila J, 1999).

4.3.3.3. Resinas aniónicas de base fuerte

Las resinas aniónicas de basicidad fuerte derivan su funcionalidad de los sitios de intercambio de amonio cuaternario. Los dos grupos principales de resinas aniónicas de base fuerte son las de Tipo 1 y Tipo 2, dependiendo del tipo de amina que se utiliza durante el proceso de activación química. Químicamente, los dos tipos difieren en el tipo de especie de sitios de intercambio de amonio cuaternario. Los sitios de Tipo 1 tienen tres grupos de metilo; en los de Tipo 2, un grupo de etanol reemplaza a uno de los grupos de metilo (Avila J, 1999).

Las resinas Tipo 1 son adecuadas para la eliminación total de aniones en todas las aguas. Son más difíciles de regenerar y se hinchan más al pasar de la forma de cloruro a la de hidróxido que las de Tipo 2. Son más resistentes a altas temperaturas y deben ser usadas en aguas de alta alcalinidad y alto contenido de silicio (Avila J, 1999).

Las resinas de Tipo 2 también presentan la eliminación de todos los aniones, pero pueden ser menos efectivas en eliminar el silicio y dióxido de carbono de las aguas donde estos ácidos débiles constituyen más del 30% del total de aniones. Los aniones de Tipo 2 brindan mejores resultados en aguas que contienen predominantemente ácidos de minerales libres (Avila J, 1999).

4.3.3.4. Resinas aniónicas de base débil

Las resinas aniónicas de basicidad débil contienen el grupo funcional de poliamina, que adsorbe ácido, eliminando así los ácidos fuertes de la corriente del efluente de cationes. Esta resina débilmente ionizada es regenerada de manera eficiente con hidróxido de sodio que restaura los sitios de intercambio a la forma de base libre. El paso de regeneración es esencialmente una neutralización de los ácidos fuertes que son recolectados en la resina. Estas
resinas deben ser usadas en aguas con niveles elevados de sulfatos o cloruros, o donde no se requiera la eliminación de la alcalinidad y del silicio (Avila J, 1999).

4.3.4. Regeneración de intercambiadores de iones

Para realizar la regeneración de lechos intercambiadores de iones existen dos tipos de sistema: Regeneración co-corriente o regeneración contra corriente. En la regeneración co-corriente se hace pasar la solución regenerante en el mismo sentido de flujo que el agua a tratar, en cambio, para el sistema a contra corriente el sentido de flujo de la regeneración es contrario al del agua a tratar (ver Ilustración 1 Sistemas de regeneración. Ilustración 1) (Pauer R, 1990).

Independientemente del sistema de regeneración a utilizar, siempre es necesario mantener el lecho en condiciones compactas; el manto compacto asegura un contacto mejor entre éste y el líquido, lo que facilita y promueve el intercambio de iones (Pauer R, 1990).

Ilustración 1 Sistemas de regeneración.

4.3.5. Ventajas de la regeneración en contracorriente.

Según Pauer (1990), la regeneración en contracorriente tiene diversas ventajas sobre la regeneración a co-corriente, las cuales se mencionan a continuación:
a) Los iones eluidos en el curso de la regeneración no tienen la posibilidad de fijarse nuevamente en el medio intercambiador, por lo cual se regenera únicamente la capacidad útil del intercambiador de iones, en cambio en la regeneración a co-corriente se debe tomar en cuenta la capacidad total. Esta diferencia se traduce en un mayor rendimiento en la utilización de regenerante en la regeneración a contracorriente.

b) Las capas de material intercambiador en la zona de salida, es decir las menos cargadas de iones, reciben un importante exceso de reactivo exento de iones a eliminar; en consecuencia, el nivel de regeneración de estas capas es particularmente alto y permite obtener en el curso del ciclo de fijación una calidad de agua netamente superior a aquella que resulta de una regeneración a co-corriente.

c) Simultáneamente con el menor consumo de reactivos, también habrá una necesidad menor de enjuague, y como consecuencia de lo mencionado anteriormente ahorro de agua de servicio.

d) El menor consumo de regenerante y agua para los enjuagues se traduce en unos volúmenes menores de efluentes. Adicionalmente, los efluentes tienden a ser auto neutralizantes, con lo que el consumo adicional de reactivos con este propósito es mínimo o nulo.

Resumiendo, la regeneración en contracorriente permite obtener un agua tratada de mejor calidad con un costo operativo menor.

4.4. Zeolita

Las zeolitas son aluminosilicatos hidratados originados por fenómenos geológicos de transformación como resultado de una reacción con aguas alcalinas de cenizas volcánicas depositadas en lagos y mares someros (Gmterra, 2002).

La fórmula general de las zeolitas es: \(\text{Me}_{x/n}(\text{AlO}_2)_y(\text{SiO}_2)_z \cdot m\text{H}_2\text{O}\), y su estructura consiste en una red tridimensional de tetraedros \(\text{SiO}_4\) y \(\text{AlO}_4\), con los átomos de silicio o aluminio en el centro y los oxígenos en los vértices (ver Ilustración 2) (Gomez, 2001).
4.4.1. Capacidad intercambio en zeolitas.

El proceso de intercambio involucra el reemplazo de un átomo intercambiable monovalente de zeolita por un átomo monovalente en solución acuosa, o el reemplazo de dos átomos monovalentes intercambiables de zeolita por un átomo bivalente en la solución. Existen tipos de zeolitas con una capacidad de intercambio catiónico de hasta 216 miliequivalentes (meq) por 100 gramos (Gmterra, 2002).

La capacidad de las zeolitas para intercambiar sus cationes depende fundamentalmente de la mayor o menor proporción de aluminio en su estructura, mostrando cada tipo de zeolita una selectividad diferente hacia determinados cationes. La capacidad de intercambio va a depender de: Su naturaleza, temperatura a la cual se realiza el intercambio, concentración de las especies catiónicas en disolución y la naturaleza del disolvente (acuoso u orgánico) (Gomez, 2001).

4.4.2. Aplicaciones de la zeolita.

La posibilidad de las zeolitas de actuar como tamiz iónico le ha permitido aparecer en operaciones de separación de cationes por intercambio iónico, sustituyendo intercambiadores convencionales de tipo orgánico y resinas de intercambio iónico. Aunque las zeolitas poseen una mayor capacidad de intercambio, presentan el inconveniente de ser inestables en medios
fuertemente ácidos o básicos. Debido a lo anterior, estas son aplicadas principalmente en procesos como:

- Desalinización del agua.
- Formulación de detergentes.
- Eliminación de residuos radiactivos.
- Preparación de abonos de acción retardada.
5. Metodología

El proyecto de comparación entre la zeolita y la resina de intercambio iónico está dividido en cuatro fases que se muestran a continuación.

5.1. Fase 1. Diseño y construcción de las unidades piloto.

Para el diseño de las unidades se tomó como referencia los parámetros de diseño de intercambiadores de iones con resina de intercambio iónico y se asumió el caso más desfavorable para una concentración de dureza a tratar de 480 a 550 mg de CaCO$_3$/L en el agua de alimentación y un valor de carga hidráulica de 25 m3/m2h (ver hoja de cálculo Anexo A).

Para la construcción de los prototipos se realizó el siguiente procedimiento:

a) Se tomaron dos tubos de PVC sanitario de 2 m de largo, con un diámetro de 1.5 pulgadas; a los cuales se les soldó una malla tipo angeo, que sirvió como falso fondo, de soporte para el material filtrante; posteriormente a cada lecho se le perforó un orificio de entrada a una altura de 1.80 m desde la malla. Además, se les colocó en la parte inferior un tapón con un orificio de salida.

b) Para la construcción de los soportes de los prototipos, se utilizaron 4 varas de madera a lo largo, para darle estabilidad al montaje, y en la parte inferior se les adicionó dos parales para sostener los prototipos.

c) A la entrada y salida de los prototipos se acondicionaron racores plásticos para acoplar las mangueras correspondientes; y a éstas a su vez se les adaptó una válvula de bola para regular el caudal.

d) A los dos prototipos se les agregó una capa de grava de 10 cm de altura como medio de soporte, sobre la cual, se adicionó en uno resina de intercambio iónico y en el otro zeolita, ambos a una altura de 0.8 m.
Fotografía 1 Montaje inicial

Ilustración 3 Esquema del montaje de las unidades piloto con resina de intercambio iónico y zeolita.

Fotografía 2 Soporte de los prototipos

Fuente: Autores, 2015

Fotografía 3 Adaptación de racores

Fotografía 4 Válvula de bola reguladora de caudal

Fotografía 5 Resina de intercambio iónico

Fotografía 6 Zeolita

En la siguiente fotografía se pueden observar los dos prototipos montados.

Fotografía 7 Unidades piloto

Fuente: Autores, 2015
Fase 2. Preparación de las muestras de agua

En un principio se planteó, que para preparar las muestras se tomará agua des-ionizada, pero debido a la gran cantidad de agua que se necesitaba para la ejecución de las pruebas, éstas se llevaron a cabo con agua del Acueducto de Bogotá la cual tiene una concentración inicial de dureza de 68,37 y de hierro de hierro 0,12 (ver Tabla 3). Esto se determinó por medio de pruebas de laboratorio.

Tabla 3 Concentración de hierro y dureza en el agua del acueducto de Bogotá

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dureza</td>
<td>68,37</td>
</tr>
<tr>
<td>Hierro</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Estos valores fueron tomados como las concentraciones “bajas” de hierro y dureza. Para las concentraciones medias y altas, se impactó el agua con sulfato de hierro para aumentar la concentración de hierro y cloruro de calcio para incrementar la concentración de dureza; los reactivos que se utilizaron fueron de tipo analítico para evitar interferencias.

Para determinar la cantidad de reactivo, se partió del supuesto que la dureza del agua del Acueducto de Bogotá era aportada solamente por iones de calcio, por lo tanto la concentración de Ca$^{2+}$ correspondiente a una dureza 68,37 mg/l de CaCO$_3$ es de 27.2 mg/l Ca$^{2+}$. El cálculo de ese valor se muestra a continuación.

$$ \frac{meq}{L \; bo} = \frac{Dureza}{meq \; CaCO_3} $$
\[
\frac{\text{meq}}{L_{\text{bog}}} = \frac{68,37 \, \text{mg} \, \text{CaCO}_3}{50 \, \text{mg} \, \text{CaCO}_3 \, \text{meq}} = 1.36 \, \frac{\text{meq}}{l}
\]

\[
[\text{Ca}]_{\text{bog}} = \frac{\text{meq}}{L_{\text{bog}}} \times \text{PE} = 1.36 \, \frac{\text{meq}}{l} \times 20 \, \frac{\text{mg}}{\text{meq}} = 27.2 \, \text{mg/l}
\]

Donde: \(\text{meq/l}_{\text{bog}}\) = miliequivalentes de Ca por litro en el agua del Acueducto de Bogotá.

Dureza= Concentración de dureza del agua del Acueducto de Bogotá.

Meq CaCO\(_3\)= mieliquivalentes del CaCO\(_3\)

\([\text{Ca}]_{\text{bog}}\)= Concentración de calcio en el agua del Acueducto de Bogotá.

PE = Peso equivalente del Calcio.

Después, se calculó la concentración de Ca para una dureza de 150 mg/l de CaCO\(_3\); el cual es el valor de concentración dureza “media”. El cálculo se muestra a continuación.

\[
\frac{\text{meq}}{L_{\text{med}}} = \frac{\text{Dureza}_{\text{med}}}{\text{meq} \, \text{CaCO}_3}
\]

\[
\frac{\text{meq}}{L_{\text{med}}} = \frac{150 \, \text{mg} \, \text{CaCO}_3}{50 \, \text{mg} \, \text{CaCO}_3 \, \text{meq}} = 3 \, \frac{\text{meq}}{l}
\]

\[
[\text{Ca}]_{\text{med}} = \frac{\text{meq}}{L_{\text{med}}} \times \text{PE} = 3 \, \frac{\text{meq}}{l} \times 20 \, \frac{\text{mg}}{\text{meq}} = 60 \, \text{mg/l}
\]

Donde: \(\text{meq/l}_{\text{med}}\) = miliequivalentes de Ca por litro en un agua con una concentración de dureza del nivel “medio”.

\(\text{Dureza}_{\text{med}}\)= Concentración de dureza “media”.

Meq CaCO\(_3\)= mieliquivalentes del CaCO\(_3\)
$[Ca]_{med}=$ Concentración de calcio para un agua con un concentración de dureza del nivel “medio.

PE = Peso equivalente del Calcio.

Como se puede observar la concentración de Ca^{+2} en el agua para una dureza de 150 mg/l de $CaCO_3$ es de 60 mg/L.

Para determinar la cantidad de $CaCl_2$ que se le debe agregar al agua para que esta tenga una dureza de 150 mg/l de $CaCO_3$ partiendo de la dureza que trae el agua del Acueducto de Bogotá, lo primero que se calculó fue la diferencia entre la concentración de dureza “media” y la concentración de dureza del agua del Acueducto de Bogotá, la cual fue de 81.63 mg/l $CaCO_3$, teniendo en cuenta que se fueran a manejar volúmenes de muestra iguales. A continuación se muestra el cálculo descrito anteriormente.

$$Q \times [Dureza]_r = Q \times [Dureza]_m - [Dureza]_b \times Q$$

$$[Dureza]_r = 150 \frac{mg}{l} CaCO_3 - 68.37 \frac{mg}{l} CaCO_3 = 81.63 \frac{mg}{L} CaCO_3$$

Donde:
- $[Dureza]_r$= Valor de la concentración de dureza que se debe aumentar.
- $[Dureza]_m$= Concentración de dureza “media”.
- $[Dureza]_b$= Concentración de dureza del agua del Acueducto de Bogotá.
- Q= Caudal.

Como todos los caudales son iguales se cancelan.

Partiendo del resultado del cálculo anterior, se halló la concentración de Ca^{+2} correspondiente a esa concentración de dureza. A continuación se muestra el cálculo.

$$\frac{meq}{L} = \frac{[Dureza]_r}{meq CaCO_3}$$
\[
\frac{\text{meq}}{L} = \frac{81.63 \frac{mg}{l} \text{CaCO}_3}{50 \frac{mg}{\text{meq} \text{CaCO}_3}} = 1.63 \frac{\text{meq}}{l}
\]

\[
[Ca]_r = \frac{\text{meq}}{l} * PE = 1.63 \frac{\text{meq}}{l} * 20 \frac{mg}{\text{meq}} = 32.6 \frac{mg}{l} Ca^{+2}
\]

Donde: \(\text{meq/l}\) = miliequivalentes de Ca por litro en un agua con una concentración de dureza de 81.63 mg/l de CaCO\(_3\).

Dureza\(_r\) = Concentración de dureza de 81.63 mg/l de CaCO\(_3\).

Meq CaCO\(_3\) = mieliquivalentes del CaCO\(_3\)

\([Ca]_r\) = Concentración de calcio para un agua con un concentración de dureza de 81.63 mg/l de CaCO\(_3\).

PE = Peso equivalente del Calcio.

Seguido al cálculo anterior, se halló la concentración de CaCl\(_2\) a la que se debe llegar para aumentar la concentración de Ca\(^{+2}\) en 32.6 mg/l Ca\(^{+2}\), y así tener una concentración de dureza de 150 mg/l de CaCO\(_3\) en el agua. A continuación se muestra el cálculo correspondiente.

\[
[\text{CaCl}_2] = \frac{[Ca]_r}{\%Ca} * 100
\]

\[
[\text{CaCl}_2] = 32.6 \frac{mg}{l} Ca^{+2} * \frac{1 \frac{mg}{l} \text{CaCl}_2}{0.36 \frac{mg}{l} Ca^{+2}} = 90.55 \frac{mg}{l} \text{CaCl}_2
\]

Donde: [CaCl\(_2\)] = Concentración de cloruro de calcio a la que se debe llegar en la muestra a preparar.

\([Ca]_r\) = Concentración de calcio para un agua con un concentración de dureza de 81.63 mg/l de CaCO\(_3\).

\(\%Ca\) = Porcentaje de calcio en el cloruro de calcio (36%). En el Anexo B se detalla el cálculo correspondiente.
Hay que aclarar que estas operaciones entre concentraciones se pueden realizar, debido a que se parte que todos los volúmenes son iguales, para este caso todos los volúmenes a preparar fueron de 30 L, considerando la capacidad de los recipientes utilizados para la alimentación del agua a las unidades piloto. Además, que para determinar los valores de concentración de dureza “bajo”, “medio” y “alto” se utilizó como base teórica lo expuesto en la Tabla 1; y para las concentraciones de hierro “bajo”, “medio” y “alto” lo mencionado en la Tabla 2.

Una vez calculada la concentración de CaCl₂ a la que se debe preparar el agua para tener una concentración de dureza de 150 mg/l de CaCO₃, se calculó la cantidad de masa a agregar, teniendo en cuenta que el volumen de agua a preparar es de 30 L, como se mencionó anteriormente, y con una pureza de reactivo del 98%. El cálculo para hallar la cantidad de masa a agregar de CaCl₂ se muestra a continuación.

\[
m_{CaCl_2} = \frac{[CaCl_2] \times V \times 1.02}{1000}
\]

\[
m_{CaCl_2} = \frac{90.55 \text{ mg} \text{ CaCl}_2 \times 30 \text{ L} \times 1000 \times 0.98}{1000 \times 0.98} = 2.77 \text{ g de CaCl}_2
\]

Donde:
- \(m_{CaCl_2}\) = masa de cloruro de calcio a agregar en el agua.
- \(V\) = Volumen de la muestra a preparar (30 L).
- 98% = Pureza del reactivo de 98%.
- 1000 = Factor de conversión de mg a g.

Los valores calculados para las otras muestras de calcio y los cálculos para la adición de hierro se pueden observar en el Anexo C.

Para evitar que el cloro que trae el agua del Acueducto de Bogotá deteriore las características físicas y químicas de la resina de intercambio iónico, se recirculó el agua por medio de una bomba para que el cloro se volatizara de manera más rápida (Ver Fotografía 8 e Ilustración 4).
Así mismo, garantizar que todo el cloro se hubiera eliminado se utilizó un kit de cloro residual y se verificó una residualidad de 0 (cero).

Fotografía 8 Recirculación del agua por medio de una bomba para eliminación de Cloro.

¡Illustración 4 Esquema recirculación de agua para eliminación de Cloro.

Fuente: Autores, 2015

Fuente: Autores, 2015.
5.2. **Fase 3. Pruebas de remoción de dureza y hierro**

En el proyecto se manejaron dos cargas hidráulicas de 25 m3/m2h (carga hidráulica alta) y 6 m3/m2h (carga hidráulica baja) con el fin de estudiar el comportamiento de los dos prototipos y observar cómo esta variable influía en la remoción de hierro y dureza.

El procedimiento fue el siguiente:

a) Se procedió a pasar 2 muestras de agua del acueducto de Bogotá a través de los prototipos de la siguiente manera: una, al prototipo de resina de intercambio iónico y la otra al prototipo de zeolita; las dos muestras tenían una concentración de dureza de 68,37 mg/l CaCO$_3$ y de hierro de (0.12 mg/l), correspondientes a las “concentraciones bajas” y se manejó una carga hidráulica de 25 m3/m2h (carga hidráulica alta).

b) Se pasaron dos muestras de agua del acueducto de Bogotá impactada, a través de los prototipos de la siguiente manera; una hacia el prototipo de resina de intercambio iónico y la otra por el prototipo de zeolita; las dos muestras tenían una concentración de dureza de 150 mg/l CaCO$_3$ y de hierro de 3 mg/l, valores que se encuentran entre los rangos establecidos para la concentración media en la presente investigación y para una carga hidráulica de 25 m3/m2h (carga hidráulica alta).

c) Después se pasaron dos muestras de agua del acueducto de Bogotá impactada por a través de los prototipos de la siguiente manera: una, a través del prototipo de resina de intercambio iónico y la otra por el prototipo de zeolita. Las dos muestras tenían una concentración de dureza de 500 mg/l CaCO$_3$ y de hierro de 10 mg/l, las cuales corresponden a las concentraciones altas; con una carga hidráulica de 25 m3/m2h (carga hidráulica alta).

d) Posteriormente se repitieron las mismas pruebas con las mismas concentraciones de dureza y hierro, pero con una variación de la carga hidráulica, la cual fue de 6 m3/m2h (carga hidráulica baja).
Fotografía 9 Montaje definitivo de los prototipos

Recipiente de 30 L donde se prepararon las muestras

Montaje con Zeolita

Montaje con Resina de intercambio iónico

Ilustración 5 Esquema completo de los sistemas de suavización.

Por medio de las válvulas de bola a la entrada y salida de los prototipos, se pudo garantizar que el agua a tratar tuviera un contacto con todo el medio filtrante y regular la carga hidráulica que se necesitaba.

Cada una de las muestras se pasó por los dos prototipos durante un periodo de 7.5 horas y se recolectaron muestras a las horas 4, 5, 6, 6.5, 7 y 7.5. Se escogió ese periodo de tiempo debido a que el tiempo entre regeneraciones con el cual se realizó el diseño de las unidades fue de 7 horas como se puede corroborar en la hoja de cálculo (Anexo A). Esto se hizo con el fin de encontrar en qué periodo de tiempo se agotaba o disminuía la capacidad de intercambio iónico de cada uno de los materiales filtrantes y así hacer su respectiva regeneración. En algunas pruebas fue necesario recolectar más muestras; debido a que al llegar a la hora 7.5 no se había agotado el medio filtrante.

Fotografía 10 Toma de muestra.

Fuente: Autores, 2015

Una vez finalizadas las 7.5 horas de cada prueba se procedió a regenerar el material filtrante, con una salmuera, la cual se hizo en contraflujo con una carga hidráulica de 5 m³/m² h y para esto se utilizó 0.12 Kg/litro de medio intercambiador como lo recomiendan las fichas técnicas proporcionadas por los proveedores. A continuación se muestra el cálculo de la cantidad de regenerante necesario para regenerar la resina de intercambio iónico.

\[m_{\text{regenerante}} = \text{Litros de medio intercambiador} \times 0.12 \frac{\text{Kg de regenerante}}{\text{Litros de medio intercambiador}} \]
\[m_{\text{regenerante}} = 0.9 \, l \times 0.12 = \frac{Kg \, de \, regenerante}{\text{Litros de medio intercambiador}} = 0.108 \, Kg \, de \, regenerante \]

Fotografía 11 Preparación salmuera.

Fotografía 12 Regeneración del material filtrante.

5.3. Fase 4. Lectura de las muestras

Luego de la recolección de las muestras horarias (entre la hora 1 y la hora de agotamiento de los medios de intercambio), se procedió al análisis de las mismas de la siguiente manera:

Para determinar la dureza presente en las muestras después del tratamiento, se empleó el método titulométrico EDTA para la medición de dureza en el agua. El método que se utilizó fue tomado del Manual de Análisis de Agua Hach (2015).
Procedimiento:

1. Se llenó un tubo plástico completo con muestra.
2. Se agregó el contenido del tubo en la botella mezcladora de sección cuadrada.
3. Se agregó a la botella mezcladora una cucharada del reactivo para dureza UniVer® 3 (Indicador Negro de Eriocromo T).
4. Se tituló gota a gota con EDTA (Ácido etilendiaminotetraacético) mezclando hasta que viró de color rosa a color azul.
5. Se multiplicó por 17.14 la cantidad de gotas del titulante utilizado y el valor se da en mg/l de CaCO₃ (cada gota equivale a 1 grano/gln y 1 grano/gln es igual a 64.79 mg/l de CaCO₃).

Ecuación para el cálculo de la dureza utilizando el Kit modelo 5B Hardness test Kit.

\[
[Dureza] \frac{mg}{L} = \#gotas \times 17.14
\]

Ilustración 6 Kit modelo 5B Hardness Test Kit

Fuente: Manual de análisis de agua Hach, 2015

Para determinar el Hierro presente en las muestras después del tratamiento, se procedió a usar el Método FerroVer (Hach) para la medición de hierro total. Este método fue tomado del Manual de Análisis de Agua Hach (2015).
Procedimiento:

1. Se ingresó el número del programa almacenado para hierro (Fe) FerroVer (fenatrolina) bolsas de polvo. *Numero de programa en el espectofotómetro Hach*: 265.
2. Se llenó una celda limpia con 10 ml de la muestra.
3. Se agregó el contenido de una bolsa de polvo de reactivo FerroVer a la celda con muestra.
4. Se agitó y se esperó a que reaccionara por 3 minutos.
5. Se llenó otra celda con 10 ml de muestra (blanco).
6. Se colocó el blanco en el espectrofotómetro y se fijó a cero.
7. Se colocó la muestra y se leyó la concentración de hierro total en mg/l.

Ilustración 7 Espectrofotómetro Hach.

Fuente: Manual de análisis de agua Hach, 2015
6. RESULTADOS Y ANÁLISIS

En este numeral se presentan los resultados de las pruebas realizadas y su correspondiente análisis.

6.1. Comportamiento de la dureza en el intercambiador con zeolita

De la Tabla 4 a la Tabla 6 se muestran los valores de concentración de dureza del agua tratada con zeolita, a una carga hidráulica de 25 m3/m2h, a las diferentes horas después de haber iniciado el tratamiento.

Tabla 4 Resultado para la concentración de dureza baja en el prototipo de zeolita con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>68.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m3/m2h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5 Resultado para la concentración de dureza media en el prototipo de zeolita con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m3/m2h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6 Resultado para la concentración de dureza alta en el prototipo de zeolita con carga hidráulica alta

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>17.14</td>
</tr>
<tr>
<td>6.5</td>
<td>34.28</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>85.7</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores 2015.

Como se observó en los resultados de las Tablas 4, 5 y 6 al incrementar la concentración inicial de dureza la zeolita fue perdiendo su capacidad de intercambio en un tiempo más corto a lo esperado (7 horas).

De la Tabla 7 a la Tabla 9 se registran las concentraciones de dureza del agua tratada con zeolita, a una carga hidráulica de 6 m³/m²h, en las diferentes horas del tratamiento.

Tabla 7 Resultado para la concentración de dureza baja en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>68.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8 Resultado para la concentración de dureza media en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32.28</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>32.28</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores.

Tabla 9 Resultado para la concentración de dureza alta en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Dureza inicial (mg/L)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>34.28</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>85.7</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores 2015.

Al igual que en las Tablas 4, 5, y 6 las Tablas 7, 8 y 9 muestran cómo se agota más rápido la capacidad de intercambio al aumentar la concentración inicial de dureza en el agua cruda. Esto muestra que la variación en la carga hidráulica no tuvo efecto en la remoción de dureza, como se corroborará más adelante en el análisis estadístico.

6.2. Comportamiento del hierro en el intercambiador con zeolita

De la Tabla 10 a la Tabla 12 se plasman los valores de concentración de hierro del agua tratada con zeolita, a una carga hidráulica de 25 m³/m²h, en las diferentes horas después del comienzo del tratamiento.
Tabla 10 Resultado para la concentración de hierro baja en el prototipo de zeolita con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Tabla 11 Resultado para la concentración de hierro media en el prototipo de zeolita con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Tabla 12 Resultado para la concentración de hierro alta en el prototipo de zeolita con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Aunque si existe una remoción del contaminante al pasar por el intercambiador con zeolita como lo muestran las Tablas 10, 11 y 12, los valores de concentración de hierro en el agua nunca fueron iguales a cero, a diferencia de las concentraciones de dureza. Además, se puede apreciar que con el transcurso del tiempo los valores de concentración fueron aumentando.

De la Tabla 13 a la Tabla 15 se presentan los valores de concentración de hierro del agua tratada con zeolita, a una carga hidráulica de 6 m³/m²h, después del tratamiento a través del tiempo.

Tabla 13 Resultado para la concentración de hierro baja en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Tabla 14 Resultado para la concentración de hierro media en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Tabla 15 Resultado para la concentración de hierro alta en el prototipo de zeolita con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Zeolita</th>
<th>Hierro inicial (mg/L)</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Al igual que con la carga hidráulica de 25 m³/m²h, los valores de concentración de hierro en el agua tratada con una carga de 6 m³/m²h (Tabla 13, 14 y 15) presentaron una disminución, pero su valor nunca llega a cero (0).

6.3. Comportamiento de dureza en el intercambiador con resina de intercambio iónico

De la Tabla 16 a la Tabla 18 se presentan los valores de concentración de dureza del agua tratada con resina de intercambio iónico, a una carga hidráulica de 25 m³/m²h, en las distintas horas después del tratamiento.

Tabla 16 Resultado para la concentración de dureza baja en el prototipo de resina con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>68.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>17.14</td>
</tr>
</tbody>
</table>

Tabla 17 Resultado para la concentración de dureza media en el prototipo de resina con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>17.14</td>
</tr>
</tbody>
</table>

Tabla 18 Resultado para la concentración de dureza alta en el prototipo de resina con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>17.14</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>17.14</td>
</tr>
</tbody>
</table>

Como se observó en las Tablas 16, 17 y 18 al pasar agua con una concentración de dureza de 500 mg/l y una carga hidráulica de 25m³/m²h a través de la resina de intercambio iónico, ésta se agotó después de la hora 7 lo cual corrobora, que la capacidad de intercambio teórica suministrada por el proveedor fue la correcta. A continuación se muestra el cálculo de la capacidad de intercambio real para la resina de intercambio iónico, partiendo de los datos obtenidos en la prueba a la que hace referencia la Tabla 18.

\[
CIC = \frac{Q \cdot Tr \cdot D}{L}
\]
\[
CIC = \frac{0.028 \text{ m}^3 \text{ h}^{-1} \times 7 \text{ h} \times 500 \frac{g}{\text{m}^3}}{0.9 \text{ l}} = 108.88 \frac{g}{l}
\]

Donde:
- \(CIC\) = Capacidad de intercambio.
- \(Q\) = Caudal en \(\text{m}^3/\text{h}\).
- \(Tr\) = Tiempo entre regeneraciones.
- \(L\) = Litros de resina
- \(D\) = Concentración de dureza del agua cruda

Como se observa en el cálculo anterior, la capacidad de intercambio real de la resina de intercambio iónico fue de 108.88 g/l, la cual es muy similar al valor que suministró el proveedor de la resina (Ver ficha técnica en el Anexo D).

Para calcular la capacidad de intercambio real de la zeolita se utilizaron los resultados de la Tabla 6.

\[
CIC = \frac{Q \times Tr \times D}{L}
\]

\[
CIC = \frac{0.028 \text{ m}^3 \text{ h}^{-1} \times 4 \text{ h} \times 500 \frac{g}{\text{m}^3}}{0.9 \text{ l}} = 62.22 \frac{g}{l}
\]

Donde:
- \(CIC\) = Capacidad de intercambio.
- \(Q\) = Caudal en \(\text{m}^3/\text{h}\).
- \(Tr\) = Tiempo entre regeneraciones.
- \(L\) = Litros de zeolita
- \(D\) = Concentración de dureza del agua cruda

Como se observa en el cálculo anterior, la capacidad de intercambio real de la zeolita fue de 62.22 g/l, la cual es menor a la de la resina de intercambio iónico en 46.66 g/l, esto explica porque el tiempo entre regeneraciones de la zeolita es menor al de la resina de intercambio iónico.
De la Tabla 19 a la Tabla 21 se presentan los valores de concentración de dureza del agua tratada con resina de intercambio iónico, a una carga hidráulica de 6 m3/m2h, en las diversas horas después del tratamiento.

Tabla 19 Resultado para la concentración de dureza baja en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>68.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m3/m2h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 20 Resultado para la concentración de dureza media en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m3/m2h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 21 Resultado para la concentración de dureza alta en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Dureza inicial (mg/L)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Dureza (mg/L)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>17.14</td>
<td></td>
</tr>
</tbody>
</table>

Al igual que con la carga hidráulica de 25 m³/m²h, los valores de concentración de dureza con carga hidráulica de 6 m³/m²h (Tabla 19,20 y 21) presentaron una disminución en su concentración y pasado un tiempo la resina de intercambio iónico perdió su capacidad de intercambio hasta agotarse.

6.4. Comportamiento del hierro en el intercambiador con resina de intercambio iónico

De la Tabla 22 a la Tabla 24 se presentan los valores de concentración de hierro en el agua tratada con resina de intercambio iónico, a una carga hidráulica de 25 m³/m²h, en las diferentes horas después del tratamiento.

Tabla 22 Resultado para la concentración de hierro baja en el prototipo de resina de intercambio iónico con carga hidráulica alta.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Hierro inicial (mg/L)</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

En la Tabla 22, 23 y 24 se observó que hubo una disminución significativa de la concentración de hierro para los valores iniciales “medio” y “altos”; en cambio para la concentración inicial “baja” la remoción es menos significativa.

De la Tabla 25 a la Tabla 27 se presentan los valores de concentración de hierro del agua tratada con resina de intercambio iónico, a una carga hidráulica de 6 m3/m2h, en las diversas horas después del tratamiento.
Tabla 25 Resultado para la concentración de hierro baja en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Hierro inicial (mg/L)</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Tabla 26 Resultado para la concentración de hierro media en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Hierro inicial (mg/L)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Tabla 27 Resultado para la concentración de hierro alta en el prototipo de resina con carga hidráulica baja.

<table>
<thead>
<tr>
<th>Resina de intercambio iónico</th>
<th>Hierro inicial (mg/L)</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga hidráulica (m³/m²h)</td>
<td>Hora</td>
<td>Hierro (mg/L)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Al igual que con la carga hidráulica de 25 m³/m²h los valores de concentración de hierro con carga hidráulica de 6 m³/m²h de la Tabla 25, 26 y 27 presentaron una disminución en los niveles
de concentración de hierro para los valores iniciales “medio” y “altos”; en cambio para la concentración inicial “baja” la remoción es menos significativa; debido a que el nivel de remoción más bajo la resina de intercambio iónico es de aproximadamente de 0.01 mg/l por lo cual al intentar remover hierro con valores cercanos a estos, la remoción no es tan pronunciada.

Para poder observar y analizar mejor los resultados expresados en las tablas anteriores, éstos se graficaron en graficas de barras, como se presentan a continuación.

Grafica 1 Variación de la concentración de dureza en el agua a través del tiempo al pasar por las unidades piloto con una concentración de dureza de 68.37 mg/l

Grafica 2 Variación de la concentración de dureza en el agua a través del tiempo al pasar por las unidades piloto con una concentración de dureza de 150 mg/l.

Grafica 3 Variación de la concentración de dureza en el agua a través del tiempo al pasar por las unidades piloto con una concentración de dureza de 500 mg/l.

Grafica 4 Variación de la concentración de hierro en el agua a través del tiempo al pasar por las unidades piloto con una concentración de hierro de 0.12 mg/l.

Grafica 5 Variación de la concentración de hierro en el agua a través del tiempo al pasar por las unidades piloto con una concentración de hierro de 3 mg/l.

Grafica 6 Variación de la concentración de hierro en el agua a través del tiempo al pasar por las unidades piloto con una concentración de hierro de 10 mg/l.

En las gráficas 1 a la 6 se observa de forma más clara, cómo la carga hidráulica no tiene influencia significativa en la remoción de hierro y dureza por medio de los intercambiadores de iones utilizados en el presente proyecto. Además, muestran el agotamiento de los medios intercambiadores (resina de intercambio y zeolita) a través del tiempo; siendo la zeolita la que se agota en un tiempo más corto.

6.5. Análisis estadístico por el método ANOVA

El tratamiento estadístico de los resultados obtenidos de las pruebas se realizó por medio de un modelo llamado Análisis de la Varianza (ANOVA). Como primero se realizó un análisis descriptivo de los datos; segundo, se planteó una hipótesis nula y una hipótesis alternativa; como tercera medida se realizaron pruebas para medir la relevancia de las variables en el modelo; y al final se estimó la ecuación representativa del modelo. Para ejecutar todo el tratamiento estadístico se utilizó el software SPSS versión 20. A continuación se mostraran los resultados más significativos del modelo.
Como se describe anteriormente, lo primero que se realizó fue un análisis descriptivo a los datos; los resultados de ese análisis se muestran en la Tabla 28.

Tabla 28 Análisis descriptivo de los datos.

<table>
<thead>
<tr>
<th>Promedio Concentración Contaminante</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hierro (mg/l)</td>
</tr>
<tr>
<td></td>
<td>Carga hidráulica</td>
</tr>
<tr>
<td>Tratamiento</td>
<td></td>
</tr>
<tr>
<td>Resina de intercambio iónico</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Promedio Resina de intercambio iónico</td>
<td></td>
</tr>
<tr>
<td>Zeolita</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Promedio Zeolita</td>
<td></td>
</tr>
<tr>
<td>Promedio Total</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores, 2015.

Analizando los promedios de las concentraciones de hierro y dureza se puede decir que para los dos niveles del factor tratamiento existe descriptivamente una diferencia siendo la resina la que más contaminante remueve. Y al parecer hay diferencias en promedio, entre los niveles de concentración, pero no entre los niveles de carga.

Para correr el modelo se planteó una hipótesis nula y una hipótesis alternativa las cuales serán rechazadas o adoptadas según el método del (valor –p) o nivel de significancia observado que es el nivel más pequeño en el que se puede rechazar la hipótesis nula.

Hipótesis Nula (Ho): No existe efecto entre los factores y la variable dependiente.
Hipótesis Alternativa (H1): Existe un efecto entre los factores y la variable dependiente.

\[H_1 = \beta_i \neq 0 \]

Los criterios de selección están regidos por el (valor-p) en relación a \(\alpha \) ó intervalo de confianza del 95%, como se muestra a continuación en la ¡Error! No se encuentra el origen de la referencia.

Ilustración 8 Definición de la zona de aceptación para el diseño experimental.

Fuente: (Walpole, 2012)

Donde:

- Se rechaza Ho, si el valor-p < \(\alpha \) y es significativa la prueba, es decir, hay efecto del factor sobre la variable dependiente. El valor-p también se conoce como p-value o sig. (de significancia).
- No se rechaza Ho, si el valor-p \(\geq \alpha \)

Después de definir las hipótesis se realizaron las pruebas de efectos inter-sujetos tomando como variable dependiente el nivel de dureza o hierro del agua después del tratamiento, obteniendo como resultados lo que se muestra en la Tabla 29.
Tabla 29 Resultados de las pruebas de efectos inter-sujetos.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados tipo III</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo corregido</td>
<td>21006,039a</td>
<td>23</td>
<td>913,306</td>
<td>6,257</td>
<td>.000</td>
</tr>
<tr>
<td>Intersección</td>
<td>4335,466</td>
<td>1</td>
<td>4335,466</td>
<td>29,703</td>
<td>.000</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2442,203</td>
<td>1</td>
<td>2442,203</td>
<td>16,732</td>
<td>.000</td>
</tr>
<tr>
<td>CARGA HIDRÁULICA</td>
<td>112,872</td>
<td>1</td>
<td>112,872</td>
<td>.773</td>
<td>.381</td>
</tr>
<tr>
<td>CONCENTRACION</td>
<td>10379,210</td>
<td>5</td>
<td>2075,842</td>
<td>14,222</td>
<td>.000</td>
</tr>
<tr>
<td>TRATAMIENTO * CARGA HIDRÁULICA</td>
<td>160,082</td>
<td>1</td>
<td>160,082</td>
<td>1,097</td>
<td>.297</td>
</tr>
<tr>
<td>TRATAMIENTO * CONCENTRACION</td>
<td>7977,975</td>
<td>5</td>
<td>1595,595</td>
<td>10,932</td>
<td>.000</td>
</tr>
<tr>
<td>CARGA HIDRÁULICA * CONCENTRACION</td>
<td>262,686</td>
<td>5</td>
<td>52,537</td>
<td>.360</td>
<td>.875</td>
</tr>
<tr>
<td>TRATAMIENTO * CARGA HIDRÁULICA * CONCENTRACION</td>
<td>401,787</td>
<td>5</td>
<td>80,357</td>
<td>.551</td>
<td>.738</td>
</tr>
</tbody>
</table>

Error | 20580,190 | 141| 145,959 | | |

Total | 46185,964 | 165| | | |

Total corregida | 41586,229 | 164| | | |

R cuadrado = .505 (R cuadrado corregida = .424)

Como se puede observar en la Tabla 29 el p-value o nivel de significancia es igual a 0,000 para el modelo; el cual es menor al α=0,05, luego se rechaza la hipótesis nula, es decir, hay evidencia estadística para decir que el modelo se ajusta a los datos.

Al revisar los factores tratamiento y concentración se encuentra que los p-value son significativos, es decir, hay efecto del TRATAMIENTO y la CONCENTRACIÓN en el nivel dureza o hierro. Esto significa que estos factores, bajo las condiciones del experimento, si explican el nivel de dureza o hierro. Sin embargo, el factor CARGA no es significativo, luego no tiene efecto sobre el nivel medio de dureza o hierro.
Al revisar el p-value o nivel de significancia para las interacciones se encuentra que es significativa la interacción tratamiento-concentración, por lo cual, se dice que hay una interacción entre dos o más factores si el efecto de uno de los factores cambia en las diferentes categorías del otro factor, es decir, si el efecto del tratamiento cambia en las categorías de la concentración o viceversa; lo que quiere decir que el efecto de los dos factores es modificador. La interacción indica, que los efectos de ambos factores no son aditivos, por lo que, si se quieren efectuar estimaciones es necesario estimar dichos efectos agregándolos a los efectos de cada factor por separado.

Después de lo anterior, se realizaron pruebas de contrastes para cuantificar el valor de incidencia de cada una de las variables en la ecuación del modelo. Los resultados de esas pruebas de contrastes se pueden observar en el Anexo J. Con los resultados de las pruebas de contrastes se procedió a estimar la ecuación que explique el modelo.

El modelo del diseño experimental se encuentra representado por las siguientes ecuaciones:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 \]

Donde

- \(Y \) = Variable dependiente DUREZA o HIERRO.
- \(\beta_0 \) = Constante (34,280) que representa la intersección del modelo.
- \(\beta_1 \) = Coeficiente del factor TRATAMIENTO (-29,995)
- \(\beta_2 \) = Coeficiente del factor CONCENTRACION (-34,215)
- \(\beta_2 \) = Coeficiente de la interacción de los factores TRATAMIENTO y CONCENTRACIÓN (29,985)
- \(X \) = Variable que se ingresará en el modelo

Y remplazando los valores de los coeficientes, tenemos:
\[Y = 34,280 - 29,995X_1 - 34,215X_2 + 29,985X_1X_2 \]

6.6. Agotamiento de la capacidad de intercambio catiónico

Para medir el agotamiento de la capacidad de intercambio catiónico en los medios, se realizaron pruebas de capacidad de intercambio catiónico por el método del acetato de amonio antes y después de comenzar las pruebas. Estas pruebas de laboratorio fueron realizadas por el Laboratorio de Suelos de La Universidad Nacional, su reporte se puede ver en el Anexo E. A continuación en la Tabla 30 se muestra un resumen de ese reporte con los valores de la capacidad de intercambio en g/l para poder comparar estos con el valor teórico suministrado por el proveedor de la resina:

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Capacidad de intercambio (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeolita antes de las pruebas</td>
<td>6.6</td>
</tr>
<tr>
<td>Zeolita después de las pruebas</td>
<td>4.1</td>
</tr>
<tr>
<td>Resina antes de las pruebas</td>
<td>101.6</td>
</tr>
<tr>
<td>Resina después de las pruebas</td>
<td>84.1</td>
</tr>
</tbody>
</table>

Como se puede observar en la Tabla 30 la zeolita antes y después de las pruebas tiene una capacidad de intercambio catiónico más baja que la resina de intercambio. Además, el agotamiento en la capacidad de intercambio en la zeolita fue de un 38\%, superior en un 20.78\% al de la resina, que solo disminuyó un 17.22\%.

De acuerdo con los resultados de la Tabla 30, la resina de intercambio iónico tuvo un valor de capacidad de intercambio iónico de 101.6 g/l, la cual es similar a la suministrada por el proveedor de la resina de intercambio iónico cuyo valor fue de 110 g/l. Además los dos valores mencionados anteriormente, son similares a la capacidad de intercambio iónico real para la resina de intercambio iónico que se calculó anteriormente, cuyo valor fue de 108.8 g/l.
6.7. Análisis Costo/Beneficio

El análisis costo/beneficio contempla las dos alternativas de tratamiento para la remoción de hierro y dureza en agua para uso industrial; así mismo los beneficios y costos que difieren en cada alternativa.

6.7.1. Descripción de las alternativas

Con el fin de eliminar la dureza y el hierro presente en el agua y cumplir los valores que recomiendan las guías para agua de uso industrial se propusieron dos unidades de intercambio de iones las cuales se contemplan a continuación (Ver Tabla 31).

Tabla 31 Descripción de las características técnicas de los componentes de las alternativas utilizadas.

<table>
<thead>
<tr>
<th>Características Técnicas de Los Componentes</th>
<th>Alternativa 1 Intercambiador de iones con resina catiónica</th>
<th>Alternativa 2 Intercambiador de iones con zeolita natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medio Soporte</td>
<td>Grava</td>
<td>Grava</td>
</tr>
<tr>
<td>Medio Intercambiador</td>
<td>Resina Catiónica</td>
<td>Zeolita natural (clinoptilotita)</td>
</tr>
<tr>
<td>Material del intercambiador</td>
<td>PVC</td>
<td>PVC</td>
</tr>
</tbody>
</table>

6.7.2. Identificación de costos

Con el fin de establecer los costos generados para la implementación de alguna de las dos alternativas, se referencian los siguientes costos; estos costos se determinaron con los precios del mercado en Bogotá en el mes de Diciembre del 2014 a Marzo del 2015.

6.7.2.1. Costos de inversión

Los costos de inversión corresponden a los costos de la construcción de las unidades piloto (prototipos) y los equipos necesarios para su funcionamiento (Ver Tabla 32).
6.7.2.2. Costos de insumos

Los insumos son los reactivos necesarios para llevar acabo el tratamiento del agua, en este caso, el único reactivo que se va utilizar es el Cloruro de sodio de tipo comercial para el proceso de regeneración. (Ver Tabla 33).

El cálculo del costo de infraestructura de la unidad piloto se puede ver detallado en el Anexo F.

El cálculo de la cantidad de cloruro de sodio y su costo se evidencia en el Anexo G.
6.7.2.3. **Costos de Energía eléctrica**

Los equipos eléctricos requieren una energía de alimentación para poder funcionar. El consumo de estos equipos se especifican en las fichas técnicas proporcionadas por el proveedor (Ver Tabla 34).

Tabla 34 Costos de Energía Eléctrica

<table>
<thead>
<tr>
<th>Costo de Energía</th>
<th>Alternativa 1 Intercambiador de iones con resina catiónica</th>
<th>Alternativa 2 Intercambiador de iones con zeolita natural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad</td>
<td>Precio $/año</td>
</tr>
<tr>
<td>Consumo Bomba sumergible</td>
<td>1.92</td>
<td>$673.92</td>
</tr>
</tbody>
</table>

El cálculo de los costos de energía se presenta en el Anexo H.

6.7.2.4. **Costos de Mantenimiento**

Los costos de mantenimiento se generan por el mantenimiento preventivo anual para los equipos (Ver Tabla 35).

Tabla 35 Costos de Mantenimiento.

<table>
<thead>
<tr>
<th>Costo de Mantenimiento</th>
<th>Alternativa 1 Intercambiador de iones con resina catiónica</th>
<th>Alternativa 2 Intercambiador de iones con zeolita natural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad</td>
<td>Precio $/año</td>
</tr>
<tr>
<td>Mantenimiento bomba sumergible</td>
<td>1</td>
<td>20.000</td>
</tr>
</tbody>
</table>

6.7.2.5. **Costo Metro cubico de agua tratada.**

En relación a los costos mencionados anteriormente se puede deducir que los costos netos por m3 de agua tratada son:

- Para la alternativa con Zeolita: $1.018,35$
- Para la alternativa con Resina: $846,01$

El cálculo del costo de metro cubico de agua tratada se puede apreciar en el Anexo I, cómo compendio de los costos presentados en las tablas de la 41 a la 44.

6.7.3. **Identificación de Beneficios**

Para identificar los beneficios de las alternativas desarrolladas en este proyecto (zeolita y resina de intercambio iónico) se parte de la base que actualmente las industrias utilizan las segundas, es decir columnas de suavización (suavizadores). Y así comparar ambas alternativas con lo que actualmente se usa en el mercado y poder realizar la identificación de los beneficios.

En virtud de lo anterior y los resultados obtenidos en el proyecto el costo actual del metro cubico de agua tratada con la tecnología empleada hoy en las industrias es de $846,01$ y este valor será el referente para calcular el flujo de caja.

6.7.3.1. **Flujo de Caja**

Para calcular el flujo de caja para las dos alternativas se compara el valor actual del costo del metro cubico de agua tratada en las industrias con el de las dos alternativas desarrolladas en el proyecto2.

2 Como se podrá apreciar más adelante la tecnología empleada en la actualidad por las industrias fue la resina de intercambio iónico; que es una de las alternativas desarrolladas en el proyecto, por lo cual la relación B/C fue igual a cero.
6.7.3.1.1. *Flujo de caja para la alternativa con Zeolita.*

A continuación se muestra el cálculo del flujo de caja para la alternativa con zeolita.

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ zeolita = m_{\text{ind}}^3 - m_{\text{zeolita}}^3
\]

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ zeolita = 846,01 - 1.018,35
\]

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ zeolita = -172,34
\]

Donde: m_{ind}^3 = Costo actual del metro cubico de agua tratada con la tecnología actualmente empleada en las industrias.

m_{zeolita}^3 = Costo del metro cubico de agua tratada con la alternativa con zeolita.

El resultado del cálculo del flujo de caja para la alternativa con zeolita fue de -$172,34$ lo que indica que utilizando esta alternativa se incrementarían los costos en el tratamiento.

6.7.3.1.2. *Flujo de caja para la alternativa con resina de intercambio iónico.*

A continuación se muestra el cálculo del flujo de caja para la alternativa con resina de intercambio iónico.

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ resina = m_{\text{ind}}^3 - m_{\text{resina}}^3
\]

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ resina = 846,01 - 846,01
\]

\[
Flujo\ de\ caja\ para\ la\ alternativa\ con\ resina = 0
\]

Dónde: m_{ind}^3 = Costo actual del metro cubico de agua tratada en las industrias.
\[\text{Costo del metro cubico de agua tratada con la alternativa con resina de intercambio iónico.} \]

Como se puede observar el resultado del cálculo del flujo de caja para la alternativa con resina de intercambio iónico fue de $0, lo cual indica que no habrá ningún aumento o reducción en los costos si se decide utilizar esta alternativa.

6.7.3.2. Otros Beneficios.

Para el cálculo de la relación Beneficio/Costo no se tuvieron en cuenta otros beneficios debido a que el estudio no se hizo para un tipo de industria en específico, por lo cual no se puede calcular el valor de esos beneficios. Entre esos beneficios se encontrarían:

- Ahorro en el cambio de equipos y tuberías por el deterioro causado en estos, debido a las incrustaciones y la corrosión.
- Aumento en la calidad del agua utilizada en la elaboración de sus productos.
- Incremento en la calidad del producto por producirlo con agua de mejor calidad.

6.7.4. Cálculo de la relación beneficio/costo.

Según Taylor (1992), la relación beneficio/costo es el cálculo del cociente entre el valor presente de los beneficios sobre el valor presente de los costos, como se plasma en la siguiente fórmula:

\[
\frac{B}{C} = \frac{VPB}{VPC}
\]

Donde: \(\frac{B}{C} = \text{Relación beneficio/costo} \)

\(VPB = \text{Valor presente de los beneficios.} \)
VPC= Valor presente de los costos.

La fórmula de la relación de B/C genera los dos criterios que guían las decisiones de aceptación o rechazo de proyectos:

- Si el B/C es cero o positivo, el proyecto debe aceptarse.
- Si el B/C es negativo, el proyecto debe rechazarse.

Para el presente proyecto el VPB es el valor del flujo de caja para cada alternativa y el VPC es el valor actual del metro cubico de agua tratada en la industria ($846,01).

6.7.4.1. Cálculo de la relación beneficio/costo para la alternativa con zeolita.

\[
\frac{B}{C} = \frac{VPB_{\text{zeolita}}}{VPC}
\]

\[
\frac{B}{C} = \frac{-172,34}{846,01}
\]

\[
\frac{B}{C} = -0.20
\]

Dónde: B/C= Relación beneficio/costo

VPB_{\text{zeolita}}= Valor presente de los beneficios con la alternativa con zeolita (Flujo de caja para la alternativa con zeolita).

VPC= Valor presente de los costos (valor actual del metro cubico de agua tratada en la industria).
6.7.4.2. Cálculo de la relación beneficio/costo para la alternativa con resina de intercambio iónico.

\[
\frac{B}{C} = \frac{V PB_{\text{resina}}}{VPC}
\]

\[
\begin{align*}
\frac{B}{C} &= \frac{\$0}{\$846,01} \\
\frac{B}{C} &= 0
\end{align*}
\]

Dónde: \(B/C \) = Relación beneficio/costo

\(VPB_{\text{resina}} \) = Valor presente de los beneficios con la alternativa con resina (Flujo de caja para la alternativa con resina).

\(VPC \) = Valor presente de los costos (valor actual del metro cúbico de agua tratada en la industria).

El valor de la relación beneficio/costo para la alternativa con zeolita fue de -0.20, y 0 para la alternativa con resina de intercambio iónico. Según los criterios de Taylor (1992), la alternativa con zeolita debe ser rechazada, en cambio, la alternativa con resina de intercambio pude ser aceptada. Lo anterior significa que la alternativa con Zeolita no trae beneficios adicionales comparándola con la de resina de intercambio iónico, pero en cambio sus costos para la implementación y operación son mayores.
7. CONCLUSIONES

- Para la remoción de hierro los resultados indicaron que ninguna de las dos alternativas fue capaz de remover en su totalidad la concentración de hierro en el agua, ni aun bajando las velocidades de 25 m3/m2h a 6 m3/m2h, siendo la resina de intercambio iónico la alternativa que más removió de 10 mg/l a 0.1 mg/l con una carga hidráulica de 25 m3/m2h.

- Según los resultados de las pruebas de laboratorio, la capacidad de intercambio catiónico de la zeolita antes y después de las pruebas es menor que la de la resina de intercambio catiónico; además, se agota un 20.78% más con respecto a su valor original que la resina de intercambio iónico, la cual se agotó solo un 17.22% respecto su valor original.

- Según el estudio, los parámetros de diseño de los intercambiadores con resina de intercambio iónico son aplicables para los intercambiadores con zeolita, toda vez que existió remoción de los dos contaminantes. Sin embargo hay que decir que los intercambiadores con zeolita son menos efectivos debido a que la capacidad de intercambio iónico del medio es inferior a los de resina de intercambio iónico.

- Según los resultados del tratamiento estadístico ANOVA, la carga hidráulica no tiene influencia en la remoción de hierro y dureza en el agua, lo cual sustenta por qué en las diferentes fichas técnicas para resinas se manejan rangos amplios de carga hidráulica. Por otro lado, la concentración inicial del contaminante y el tipo de tratamiento, ya sea con resina o zeolita, efectivamente influyen en la eliminación de dichos contaminantes. Además, se observó que con la resina de intercambio iónico se obtienen mejores resultados para la remoción de los dos contaminantes en cuanto a tiempo entre regeneraciones, debido a que tiene una capacidad de intercambio iónico real de 108 g/l, la cual es mayor a los 62.22 g/l que tiene la zeolita.

- De acuerdo a los resultados del cálculo de la relación beneficio/costo, que para la alternativa con zeolita dio un valor de -0.20, esta alternativa no es conveniente utilizarla,
debido a que, generaría un incremento en los costos del tratamiento del agua sin ningún beneficio adicional a los generados por la alternativa con resina de intercambio catiónico.

- Por lo observado en el análisis de la relación beneficio/costo, la alternativa con zeolita natural no genera beneficios adicionales a los proporcionados por la alternativa con resina de intercambio iónico, en cambio, su costo por metro cúbico de agua tratada es mayor en $172,34. Lo anterior debido a que los costos de insumos para la alternativa con zeolita son mayores en $9,362,00 por año; estos costos son mayores como consecuencia de que el tiempo de agotamiento de la zeolita es menor, por lo cual se debe regenerar más veces, gastando así una mayor cantidad de regenerante.
8. RECOMENDACIONES

- Trabajar la Resina de intercambio iónico y la Zeolita a cargas hidráulicas más bajas a las propuestas por los autores del presente documento, con el fin de verificar si a velocidades más bajas, existe la posibilidad de retener todo el hierro presente en un agua a tratar, ante una variación de concentración.
- Vale la pena realizar un estudio donde se compare la remoción de hierro con zeolita y arena ante la variación de velocidad y concentración de contaminantes, toda vez que la arena es empleada comúnmente como medio de remoción de trazas de Hierro o precipitados de Hierro insolubles, previamente oxidados o generados por procesos de coagulación.
- Se recomienda que para futuros trabajos de investigación de remoción de hierro y dureza se tome el agua de una empresa específica para poder determinar y cuantificar los beneficios reales a la hora de implementar una nueva tecnología de remoción de dichos iones.
- Sería interesante realizar un estudio para predecir el tiempo en el que se agota la capacidad de intercambio iónico de un medio intercambiador de iones; realizando varias veces la misma prueba en condiciones de concentración del contaminante y velocidades de flujo iguales, para así poder medir en el tiempo el comportamiento de la capacidad de intercambio de los medios intercambiadores, y basado en ese comportamiento poder crear un modelo predictivo para esto.
- Un estudio que se debería hacer es tomar la misma metodología que se utilizó en esta investigación, pero utilizando varios tipos de zeolitas para comprobar la capacidad de intercambio de los diferentes tipos, y así observar su cuál de todos los tipos de zeolita es la mejor para realizar remoción de dureza y hierro.
9. Bibliografía

Avendaño, N. (s.f.). *Remoción de hierro (Fe) y manganeso (Mn).* Recuperado el 30 de Abril de 2015, de Universidad tecnológica Nacional: http://www.frm.utn.edu.ar/archivos/civil/Sanitaria/Remoci%C3%B3n%20de%20Hierro%20y%20Manganeso.pdf

Anexos

Anexo A. Hoja de cálculo para intercambiadores.
Tabla 36 Hoja de cálculo para intercambiador con resina de intercambio iónico.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Símbolo</th>
<th>Unidades</th>
<th>Formula</th>
<th>Valor</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro en pulgadas</td>
<td>φ</td>
<td>in</td>
<td>Asumido</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Diámetro en metros</td>
<td>φm</td>
<td>m</td>
<td>φ*0,0254</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>Área</td>
<td>A</td>
<td>m²</td>
<td>(π*(φ²))/4</td>
<td>0.0011</td>
<td></td>
</tr>
<tr>
<td>Carga hidráulica</td>
<td>So</td>
<td>m³/m²h</td>
<td>Asumido</td>
<td>25</td>
<td>según ficha técnica</td>
</tr>
<tr>
<td>Caudal</td>
<td>Q</td>
<td>m³/h</td>
<td>So*A</td>
<td>0.0283</td>
<td></td>
</tr>
<tr>
<td>Caudal en litros</td>
<td>Ql</td>
<td>L/h</td>
<td>Q*1000</td>
<td>28.32</td>
<td></td>
</tr>
<tr>
<td>CIC en min eq/L</td>
<td>CIC</td>
<td>min eq/L</td>
<td>Asumido</td>
<td>2.2</td>
<td>según ficha técnica</td>
</tr>
<tr>
<td>CIC en g/L</td>
<td>CIC (g/L)</td>
<td>g/L</td>
<td>CIC*50</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Tiempo entre regeneraciones</td>
<td>Trh</td>
<td>horas</td>
<td>Asumido</td>
<td>7</td>
<td>según ficha técnica</td>
</tr>
<tr>
<td>Dureza entrada</td>
<td>D</td>
<td>g/m³</td>
<td>Asumido</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Volumen del medio</td>
<td>V</td>
<td>L</td>
<td>(QTrhD)/CIC(g/L)</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Altura del lecho</td>
<td>h</td>
<td>m</td>
<td>V/A</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Altura total</td>
<td>ht</td>
<td>m</td>
<td>(h²)+0,2m</td>
<td>1.79</td>
<td>10 cm borde libre + 10 cm medio de soporte</td>
</tr>
</tbody>
</table>

CIC: capacidad de intercambio catiónico.
Anexo B. Cálculo del porcentaje de calcio en el cloruro de calcio.

\[PM \, CaCl_2 = PA_{Ca} + 2(PA_{Cl}) \]

\[PM \, CaCl_2 = 40 + 2(35.5) = 111 \frac{g}{mol\, CaCl_2} \]

\[\%Ca = \frac{PA_{Ca}}{PM\, CaCl_2} \times 100 \]

\[\%Ca = \frac{40}{111} \times 100 = 36.03\% \]
Anexo C. Cálculo de masa del reactivo para preparar las muestras de agua.
Tabla 37 Cálculo preparar el agua con la concentración "media" de dureza.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Símbolo</th>
<th>Unidades</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molecular del Carbonato de calcio</td>
<td>PMCaCO₃</td>
<td>g/mol</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Peso molecular del cloruro de calcio</td>
<td>PMCaCl₂</td>
<td>g/mol</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Peso atómico del Ca</td>
<td>PA_Ca</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Porcentaje de Calcio en el cloruro de calcio</td>
<td>%Ca</td>
<td>%</td>
<td>(PA_Ca / PMCaCl₂) *100</td>
<td>36.04</td>
</tr>
<tr>
<td>Concentración de dureza Acueducto Bogotá</td>
<td>Dbog</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>68.37</td>
</tr>
<tr>
<td>Meliequivalentes de CaCO₃</td>
<td>meqCaCO₃</td>
<td>mg CaCO₃/meq</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Ca para la dureza del agua de Bogotá</td>
<td>meq_bog</td>
<td>meq Ca/l</td>
<td>Dbog / meqCaCO₃</td>
<td>1.37</td>
</tr>
<tr>
<td>Peso equivalente del calcio</td>
<td>PE_Ca</td>
<td>mg/meq Ca</td>
<td>PA_Ca / 2</td>
<td>20</td>
</tr>
<tr>
<td>Concentración de calcio en el agua de Bogotá</td>
<td>Ca_bog</td>
<td>mg/l de Ca</td>
<td>meq_bog * PE_Ca</td>
<td>27.35</td>
</tr>
<tr>
<td>Concentración de dureza "media"</td>
<td>D_med</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Ca para la dureza "media"</td>
<td>meq_med</td>
<td>meq Ca/l</td>
<td>D_med / meqCaCO₃</td>
<td>3</td>
</tr>
<tr>
<td>Concentración de calcio en el agua con dureza "media"</td>
<td>Ca_med</td>
<td>mg/l de Ca</td>
<td>meq_med * PE_Ca</td>
<td>60</td>
</tr>
<tr>
<td>Concentración de dureza que se debe aumentar</td>
<td>D_a</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>81.63</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Ca para la dureza que se debe aumentar</td>
<td>meq_a</td>
<td>meq Ca/l</td>
<td>D_a / meqCaCO₃</td>
<td>1.63</td>
</tr>
<tr>
<td>Concentración de calcio en el agua con dureza a aumentir</td>
<td>Ca_a</td>
<td>mg/l de Ca</td>
<td>meq_a * PE_Ca</td>
<td>32.65</td>
</tr>
<tr>
<td>Concentración de Cloruro de calcio a la que se debe llegar</td>
<td>CaCl₂ₙd</td>
<td>mg/l de CaCl₂</td>
<td>(Ca_a / %Ca)*100</td>
<td>90.61</td>
</tr>
<tr>
<td>Volumen de muestra a preparar</td>
<td>V</td>
<td>1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Pureza del cloruro de calcio</td>
<td>%CaCl₂</td>
<td>%</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Masa a agregar de cloruro de calcio</td>
<td>mCaCl₂</td>
<td>g de CaCl₂</td>
<td>(CaCl₂ₙdV1.02)/100</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Hoja de Cálculo para preparar el agua con la concentración "alta" de dureza.

Concepto	Símbolo	Unidades	Formula	Valor
---	-----------	---------------------		
Peso molecular del Carbonato de calcio	PMCaCO₃	g/mol		100
Peso molecular del cloruro de calcio	PMCaCl₂	g/mol		111
Peso atómico del Ca	PA_{Ca}			40
Porcentaje de Calcio en el cloruro de calcio	%_{Ca}	%	(PA_{Ca} / PMCaCl₂) *100	36.04
Concentración de dureza Acueducto Bogotá	D_{bog}	mg/l de CaCO₃		68.37
Miliequivalentes de CaCO₃	meq_{CaCO₃}	mg CaCO₃/meq		50
Miliequivalentes por litro de Ca para la dureza del agua de Bogotá	meq_{bog}	meq Ca/l	D_{bog} / meqCaCO₃	1.37
Peso equivalente del calcio	PE_{Ca}	mg/meq Ca	PA_{Ca} / 2	20
Concentración de calcio en el agua de Bogotá	C_{bog}	mg/l de Ca	meq_{bog} * PE_{Ca}	27.35
Concentración de dureza "alta"	D_{alt}	mg/l de CaCO₃		500
Miliequivalentes por litro de Ca para la dureza "alta"	meq_{alt}	meq Ca/l	D_{alt} / meqCaCO₃	10
Concentración de calcio en el agua con dureza "alta"	C_{alt}	mg/l de Ca	meq_{alt} * PE_{Ca}	200
Concentración de dureza que se debe aumentar	D_a	mg/l de CaCO₃	D_{alt} - D_{bog}	431.63
Miliequivalentes por litro de Ca para la dureza que se debe aumentar	meq_a	meq Ca/l	D_a / meqCaCO₃	8.63
Concentración de calcio en el agua con dureza a aumentir	C_a	mg/l de Ca	meq_a * PE_{Ca}	172.65
Concentración de Cloruro de calcio a la que se debe llegar	CaCl₂_d	mg/l de CaCl₂	(C_a / %_{Ca}) *100	479.11
Volumen de muestra a preparar	V	l		30
Pureza del cloruro de calcio	%_{CaCl₂}	%		98
Masa a agregar de cloruro de calcio	mCaCl₂	g de CaCl₂	(CaCl₂_d*V*1.02)/1000	14.66

Fuente: Autores, 2015.
Tabla 39 Calculo preparar el agua con la concentración "media" de hierro.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Símbolo</th>
<th>Unidades</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molecular del Carbonato de calcio</td>
<td>PMCaCO₃</td>
<td>g/mol</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Peso molecular del sulfato ferroso</td>
<td>PMFeSO₄</td>
<td>g/mol</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Peso atómico del hierro</td>
<td>PAFe</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Porcentaje de hierro en el sulfato ferroso</td>
<td>%Fe</td>
<td>%</td>
<td>(PAFe/PMFeSO₄)*100</td>
<td>36.84</td>
</tr>
<tr>
<td>Concentración de hierro Acueducto Bogotá</td>
<td>H_bog</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Miliequivalentes CaCO₃</td>
<td>meqCaCO₃</td>
<td>mg CaCO₃/meq</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe⁺ para la concentración de hierro del agua de Bogotá</td>
<td>meq_bog</td>
<td>meq Fe⁺/l</td>
<td>H_bog/meqCaCO₃</td>
<td>0.002</td>
</tr>
<tr>
<td>Peso equivalente del hierro</td>
<td>PEFe</td>
<td>mg/meq Fe</td>
<td>PMFe/1</td>
<td>56</td>
</tr>
<tr>
<td>Concentración de Fe⁺ en el agua de Bogotá</td>
<td>Fe_bog</td>
<td>mg/l de Fe⁺</td>
<td>meq_bog *PEFe</td>
<td>0.13</td>
</tr>
<tr>
<td>Concentración de hierro “media”</td>
<td>H_med</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe⁺ para la concentración de hierro de Bogotá</td>
<td>meq_med</td>
<td>meq Fe⁺/l</td>
<td>H_med/meqCaCO₃</td>
<td>0.06</td>
</tr>
<tr>
<td>Concentración de Fe⁺ para la concentración de hierro “media”</td>
<td>Fe_med</td>
<td>mg/l de Fe⁺</td>
<td>meq_med *PEFe</td>
<td>3.36</td>
</tr>
<tr>
<td>Concentración de hierro que se debe aumentar</td>
<td>H_a</td>
<td>mg/l de CaCO₃</td>
<td>H_med – H_bog</td>
<td>2.88</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe para el hierro que se debe aumentar</td>
<td>meq_a</td>
<td>meq Fe⁺/l</td>
<td>Ha/meqCaCO₃</td>
<td>0.06</td>
</tr>
<tr>
<td>Concentración de Fe⁺ en el agua con hierro a aumentar</td>
<td>Fe_a</td>
<td>mg/l de Fe⁺</td>
<td>meq_a * PEFe</td>
<td>3.23</td>
</tr>
<tr>
<td>Concentración de sulfato ferroso a la que se debe llegar</td>
<td>FeSO₄d</td>
<td>mg/l de FeSO₄</td>
<td>(Fe_a / %Fe)*100</td>
<td>8.76</td>
</tr>
<tr>
<td>Volumen de muestra a preparar</td>
<td>V</td>
<td>L</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Pureza del sulfato ferroso</td>
<td>%FeSO₄</td>
<td>%</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Masa a agregar de sulfato ferroso</td>
<td>mFeSO₄</td>
<td>g de FeSO₄</td>
<td>(FeSO₄ * V * 1.02)/1000</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Símbolo</th>
<th>Unidades</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molecular del Carbonato de calcio</td>
<td>PMCaCO₃</td>
<td>g/mol</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Peso molecular del sulfato ferroso</td>
<td>PMFeSO₄</td>
<td>g/mol</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Peso atómico del hierro</td>
<td>PAFe</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Porcentaje de hierro en el sulfato ferroso</td>
<td>%Fe</td>
<td>%</td>
<td>(PAFe/PMFeSO₄)*100</td>
<td>36.84</td>
</tr>
<tr>
<td>Concentración de hierro Acueducto Bogotá</td>
<td>H₂₀</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Miliequivalentes CaCO₃</td>
<td>meqCaCO₃</td>
<td>mg CaCO₃/meq</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe⁺ para la concentración</td>
<td>meq₂₀</td>
<td>meq Fe⁺/l</td>
<td>H₂₀/meqCaCO₃</td>
<td>0.002</td>
</tr>
<tr>
<td>de hierro del agua de Bogotá</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso equivalente del hierro</td>
<td>PE₂₀</td>
<td>mg/meq Fe</td>
<td>PMFe/l</td>
<td>56</td>
</tr>
<tr>
<td>Concentración de Fe⁺ en el agua de Bogotá</td>
<td>Fe₂₀</td>
<td>mg/l de Fe⁺</td>
<td>meq₂₀*PE₂₀</td>
<td>0.13</td>
</tr>
<tr>
<td>Concentración de hierro “alta”</td>
<td>H₃₀</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe⁺ para la concentración</td>
<td>meq₃₀</td>
<td>meq Fe⁺/l</td>
<td>H₃₀/meqCaCO₃</td>
<td>0.2</td>
</tr>
<tr>
<td>de hierro de Bogotá</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentración de Fe⁺ para la concentración de hierro</td>
<td>Fe₃₀</td>
<td>mg/l de Fe⁺</td>
<td>meq₃₀*PE₂₀</td>
<td>11.2</td>
</tr>
<tr>
<td>“alta”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentración de hierro que se debe aumentar</td>
<td>H₄₀</td>
<td>mg/l de CaCO₃</td>
<td></td>
<td>9.88</td>
</tr>
<tr>
<td>Miliequivalentes por litro de Fe para el hierro que se</td>
<td>meq₄₀</td>
<td>meq Fe⁺/l</td>
<td>Ha/meqCaCO₃</td>
<td>0.20</td>
</tr>
<tr>
<td>debe aumentar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentración de Fe⁺ en el agua con hierro a aumentar</td>
<td>Fe₄₀</td>
<td>mg/l de Fe⁺</td>
<td>meq₄₀*PE₂₀</td>
<td>11.07</td>
</tr>
<tr>
<td>Concentración de sulfato ferroso a la que se debe llegar</td>
<td>FeSO₄d</td>
<td>mg/l de FeSO₄</td>
<td>(Fe₄₀ / %Fe)*100</td>
<td>30.04</td>
</tr>
<tr>
<td>Volumen de muestra a preparar</td>
<td>V</td>
<td>L</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Pureza del sulfato ferroso</td>
<td>%FeSO₄</td>
<td>%</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Masa a agregar de sulfato ferroso</td>
<td>mFeSO₄</td>
<td>g de FeSO₄</td>
<td>(FeSO₄ * V * 1.02)/100</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Anexo D. Ficha técnica resina de intercambio iónico.

INFORMACIÓN DE PRODUCTO
LEWATIT® MonoPlus S 108

Descripción general

<table>
<thead>
<tr>
<th>Forma de suministro</th>
<th>Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo funcional</td>
<td>Ácido sulfónico</td>
</tr>
<tr>
<td>Matriz</td>
<td>Poliestireno reticulado</td>
</tr>
<tr>
<td>Estructura</td>
<td>Gel</td>
</tr>
<tr>
<td>Aspecto</td>
<td>Negro-pardo</td>
</tr>
</tbody>
</table>

Propiedades especificadas

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Unidades métricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de uniformidad</td>
<td>máx. 1,05 (+/- 0,05)</td>
</tr>
<tr>
<td>Tamaño medio del grano</td>
<td>mm 0,62 (+/- 0,05)</td>
</tr>
<tr>
<td>Capacidad total</td>
<td>min. eq/l 2,2</td>
</tr>
</tbody>
</table>

Propiedades físico-químicas

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Unidades métricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad aparente</td>
<td>g/l 840</td>
</tr>
<tr>
<td>Densidad</td>
<td>aprox. g/ml 1,30</td>
</tr>
<tr>
<td>Contenido en agua</td>
<td>% en peso 41 - 46</td>
</tr>
<tr>
<td>Varianza de volumen</td>
<td>Na⁺ --> H⁺ máx. % vol. 10</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>rango de pH 0 - 14</td>
</tr>
<tr>
<td>Almacenaje del producto</td>
<td>máx. años 2</td>
</tr>
<tr>
<td>Almacenaje</td>
<td>rango de temperatura °C -20 - +40</td>
</tr>
</tbody>
</table>
Anexo E. Reporte de análisis de laboratorio sobre capacidad de intercambio catiónico.
Anexo F. Cálculo del costo de la construcción de la unidad piloto.
Tabla 41 Costo infraestructura de una unidad piloto.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidades</th>
<th>Cantidad</th>
<th>Precio unitario</th>
<th>Precio Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubo de PVC de 1 1/2"</td>
<td>metro</td>
<td>1.8</td>
<td>$11.000,00</td>
<td>$19.800,00</td>
</tr>
<tr>
<td>Unión en PVC de 1 1/2"</td>
<td>Unidad</td>
<td>1</td>
<td>$2.000,00</td>
<td>$2.000,00</td>
</tr>
<tr>
<td>Válvula de bola en PVC de 3/4"</td>
<td>Unidad</td>
<td>2</td>
<td>$4.500,00</td>
<td>$9.000,00</td>
</tr>
<tr>
<td>Tapón en PVC</td>
<td>Unidad</td>
<td>1</td>
<td>$1.500,00</td>
<td>$1.500,00</td>
</tr>
<tr>
<td>Racor para manguera plástica</td>
<td>Unidad</td>
<td>5</td>
<td>$850,00</td>
<td>$4.250,00</td>
</tr>
<tr>
<td>Silletas en caucho</td>
<td>Unidad</td>
<td>2</td>
<td>$500,00</td>
<td>$1.000,00</td>
</tr>
<tr>
<td>Manguera Plástica Cristal de 1/2"</td>
<td>metros</td>
<td>2.5</td>
<td>$3.200,00</td>
<td>$8.000,00</td>
</tr>
<tr>
<td>Madera para soporte</td>
<td>metros</td>
<td>10</td>
<td>$1.000,00</td>
<td>$10.000,00</td>
</tr>
<tr>
<td>Clavos para madera</td>
<td>Unidad</td>
<td>18</td>
<td>$100,00</td>
<td>$1.800,00</td>
</tr>
<tr>
<td>Pegamento para PVC</td>
<td>Unidad</td>
<td>1</td>
<td>$4.500,00</td>
<td>$4.500,00</td>
</tr>
<tr>
<td>Limpriador para PVC</td>
<td>Unidad</td>
<td>1</td>
<td>$3.400,00</td>
<td>$3.400,00</td>
</tr>
<tr>
<td>Tanque de 40 L</td>
<td>Unidad</td>
<td>1</td>
<td>$16.000,00</td>
<td>$16.000,00</td>
</tr>
<tr>
<td>Balde de 10 L</td>
<td>Unidad</td>
<td>1</td>
<td>$7.000,00</td>
<td>$7.000,00</td>
</tr>
<tr>
<td>Total ($)</td>
<td></td>
<td></td>
<td></td>
<td>$88.250,00</td>
</tr>
</tbody>
</table>

Anexo G. Cálculo de la cantidad y costo del cloruro de sodio

Tabla 42 Cálculo de la cantidad y costo de regenerante para la unidad con zeolita.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidades</th>
<th>Símbolo</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas de trabajo</td>
<td>Hora/día</td>
<td>Ht</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Días de trabajo al año</td>
<td>días</td>
<td>Da</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Horas entre Regeneraciones</td>
<td>Horas</td>
<td>Hr</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Numero de regeneraciones diarias</td>
<td>#regeneración/día</td>
<td>Rd</td>
<td>Ht/Hr</td>
<td>2</td>
</tr>
<tr>
<td>Numero de regeneraciones anuales</td>
<td>#regeneración/año</td>
<td>Ra</td>
<td>Rd*Da</td>
<td>480</td>
</tr>
<tr>
<td>Cantidad de reactivo por regeneración</td>
<td>Kg/regeneración</td>
<td>Kr</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Cantidad de reactivo por año</td>
<td>Kg/año</td>
<td>Ka</td>
<td>Ra*Kr</td>
<td>51.84</td>
</tr>
<tr>
<td>Precio regenerante por kilo</td>
<td>$/kg</td>
<td>$k</td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Precio regenerante por año</td>
<td>$/año</td>
<td>$a</td>
<td>Ka*$k</td>
<td>28512</td>
</tr>
</tbody>
</table>

Tabla 43 Cálculo de la cantidad y costo de regenerante para la unidad con resina

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidades</th>
<th>Símbolo</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas de trabajo</td>
<td>Hora/día</td>
<td>Ht</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Días de trabajo al año</td>
<td>días</td>
<td>Da</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Horas entre Regeneraciones</td>
<td>Horas</td>
<td>Hr</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>Numero de regeneraciones diarias</td>
<td>#regeneracion/dia</td>
<td>Rd</td>
<td>Ht/Hr</td>
<td>1.14</td>
</tr>
<tr>
<td>Numero de regeneraciones anuales</td>
<td>#regeneracion/año</td>
<td>Ra</td>
<td>Rd*Da</td>
<td>274.29</td>
</tr>
<tr>
<td>Cantidad de reactivo por regeneración</td>
<td>Kg/regeneración</td>
<td>Kr</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Cantidad de reactivo por año</td>
<td>Kg/año</td>
<td>Ka</td>
<td>Ra*Kr</td>
<td>29.62</td>
</tr>
<tr>
<td>Precio regenerante por kilo</td>
<td>$/kg</td>
<td>$k</td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Precio regenerante por año</td>
<td>$/año</td>
<td>$a</td>
<td>Ka*$k</td>
<td>16292.57</td>
</tr>
</tbody>
</table>

Anexo H. Cálculo de la cantidad de kilovatios anuales y su costo.
Tabla 44 Cálculo de la cantidad de kilovatios anuales y su costo.

<table>
<thead>
<tr>
<th>Item</th>
<th>Unidades</th>
<th>Símbolo</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas de trabajo</td>
<td>Hora/día</td>
<td>Ht</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Días de trabajo al año</td>
<td>días</td>
<td>Da</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Potencia de la bomba</td>
<td>Watts</td>
<td>W</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Consumo de la bomba por día</td>
<td>Wh/día</td>
<td>Cb</td>
<td>Ht * W</td>
<td>8</td>
</tr>
<tr>
<td>Costo kilovatio hora</td>
<td>$/kwh</td>
<td>Ch</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>Kilovatios al año</td>
<td>kwh/año</td>
<td>Ka</td>
<td>(Cb*Da)/1000</td>
<td>1.92</td>
</tr>
<tr>
<td>Costo energía de la bomba en un día</td>
<td>$/día</td>
<td>Cbh</td>
<td>(Cb*Ch)/1000</td>
<td>2.808</td>
</tr>
<tr>
<td>Costo energía al año</td>
<td>$/año</td>
<td>$a</td>
<td>Cb*Da</td>
<td>673.92</td>
</tr>
</tbody>
</table>

Fuente: Autores.
Anexo I. Costo metro cúbico de agua tratada.

Tabla 45 Costo metro cúbico de agua tratada para la unidad con zeolita.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidades</th>
<th>Símbolo</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Insumos</td>
<td>$</td>
<td>Ci</td>
<td></td>
<td>$34,659.07</td>
</tr>
<tr>
<td>Costos Energéticos</td>
<td>$</td>
<td>Ce</td>
<td></td>
<td>$673.92</td>
</tr>
<tr>
<td>Costos de mantenimiento</td>
<td>$</td>
<td>Cm</td>
<td></td>
<td>$20,000.00</td>
</tr>
<tr>
<td>Costos Totales</td>
<td>$</td>
<td>Ct</td>
<td>Ci+Ce+Cm</td>
<td>$55,332.99</td>
</tr>
<tr>
<td>Caudal en litros por hora</td>
<td>L/h</td>
<td>Q1</td>
<td></td>
<td>28.3</td>
</tr>
<tr>
<td>Caudal en metros cúbicos por hora</td>
<td>m^3/h</td>
<td>Q2</td>
<td>Q1/1000</td>
<td>0.0283</td>
</tr>
<tr>
<td>Horas de trabajo en un día</td>
<td>H/día</td>
<td>Hd</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Caudal en metros cúbicos día</td>
<td>m^3/día</td>
<td>Q3</td>
<td>Q2*Hd</td>
<td>0.23</td>
</tr>
<tr>
<td>Días de trabajo al año</td>
<td>Día</td>
<td>Da</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Metros cúbicos de agua en un año</td>
<td>m^3/año</td>
<td>Ma</td>
<td>Da*Q3</td>
<td>54.34</td>
</tr>
<tr>
<td>Costo metro cúbico de agua tratada</td>
<td>$/m^3</td>
<td>$m</td>
<td></td>
<td>$1,018.35</td>
</tr>
</tbody>
</table>

Fuente: Autores.

Tabla 46 Costo metro cúbico de agua tratada por la unidad con resina.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Unidades</th>
<th>Símbolo</th>
<th>Formula</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Insumos</td>
<td>$</td>
<td>Ci</td>
<td></td>
<td>$25,295.00</td>
</tr>
<tr>
<td>Costos Energéticos</td>
<td>$</td>
<td>Ce</td>
<td></td>
<td>$673.92</td>
</tr>
<tr>
<td>Costos de mantenimiento</td>
<td>$</td>
<td>Cm</td>
<td></td>
<td>$20,000.00</td>
</tr>
<tr>
<td>Costos Totales</td>
<td>$</td>
<td>Ct</td>
<td>Ci+Ce+Cm</td>
<td>$45,968.92</td>
</tr>
<tr>
<td>Caudal en litros por hora</td>
<td>L/h</td>
<td>Q1</td>
<td></td>
<td>28.3</td>
</tr>
<tr>
<td>Caudal en metros cúbicos por hora</td>
<td>m^3/h</td>
<td>Q2</td>
<td>Q1/1000</td>
<td>0.0283</td>
</tr>
<tr>
<td>Horas de trabajo en un día</td>
<td>H/día</td>
<td>Hd</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Caudal en metros cúbicos día</td>
<td>m^3/día</td>
<td>Q3</td>
<td>Q2*Hd</td>
<td>0.23</td>
</tr>
<tr>
<td>Días de trabajo al año</td>
<td>Día</td>
<td>Da</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Metros cúbicos de agua en un año</td>
<td>m^3/año</td>
<td>Ma</td>
<td>Da*Q3</td>
<td>54.336</td>
</tr>
<tr>
<td>Costo metro cúbico de agua tratada</td>
<td>$/m^3</td>
<td>$m</td>
<td></td>
<td>$846.01</td>
</tr>
</tbody>
</table>

Fuente: Autores.
Anexo J. Análisis estadístico ANOVA.

PLAN DE ANALISIS.

Objeto.

Evaluar el efecto del TRATAMIENTO, CARGA y CONCENTRACION en el nivel de Dureza o Hierro.

Factores evaluados.

- TRATAMIENTO con dos niveles: resina y zeolita
- CARGA HIDRÁULICA con dos niveles 6 y 25
- CONCENTRACION DEL CONTAMINANTE con seis niveles (3 de hierro: 0.12, 3, 10 y 3 de dureza: 68.37, 150 y 500).

Variables de respuesta.

Se presenta como variable respuesta el nivel de Dureza (mg/L) o el nivel de hierro (mg/L)

Análisis descriptivo.

Usando el Software estadístico SPSS Se efectúa el análisis descriptivo calculando medidas de tendencia central y medidas de dispersión. Se usó SPSS versión 20 que es un software estadístico. Inicialmente era el acrónimo de Statistical Package for the Social Sciences y como "Statistical Product and Service Solutions" (Pardo, A., & Ruiz, M.A., 2002, p. 3). Actualmente simplemente se habla de un paquete estadístico
Estadística descriptiva.

<table>
<thead>
<tr>
<th>Promedio C. Contaminante</th>
<th>Concentración</th>
<th>Hierro (mg/l)</th>
<th>Dureza (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carga hidráulica</td>
<td>0,12</td>
<td>3</td>
</tr>
<tr>
<td>Resina de intercambio iónico</td>
<td>6</td>
<td>0,14</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0,06</td>
<td>0,48</td>
</tr>
<tr>
<td>Promedio Resina de intercambio iónico</td>
<td>0,1</td>
<td>0,54</td>
<td>0,04</td>
</tr>
<tr>
<td>Zeolita</td>
<td>6</td>
<td>0,05</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0,07</td>
<td>0,27</td>
</tr>
<tr>
<td>Promedio Zeolita</td>
<td>0,06</td>
<td>0,22</td>
<td>0,51</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,08</td>
<td>0,38</td>
<td>0,27</td>
</tr>
</tbody>
</table>

Promedio por tratamiento y concentración.

<table>
<thead>
<tr>
<th>Promedio C. Contaminante</th>
<th>Concentración</th>
<th>Hierro (mg/l)</th>
<th>Dureza (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,12</td>
<td>3</td>
</tr>
<tr>
<td>Tratamiento</td>
<td></td>
<td>0,1</td>
<td>0,54</td>
</tr>
<tr>
<td>Resina de intercambio iónico</td>
<td>0,06</td>
<td>0,22</td>
<td>0,51</td>
</tr>
<tr>
<td>Zeolita</td>
<td>0,08</td>
<td>0,38</td>
<td>0,27</td>
</tr>
</tbody>
</table>
Promedio por tratamiento

Promedio de C. Contaminante

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resina</td>
<td>1,46</td>
</tr>
<tr>
<td>Zeolita</td>
<td>9,64</td>
</tr>
<tr>
<td>Total General</td>
<td>5,28</td>
</tr>
</tbody>
</table>

Analizando los promedios de hierro y dureza puede decirse que para los dos niveles del FACTOR TRATAMIENTO existe descriptivamente una diferencia siendo la resina la que más contaminante remueve.

Al parecer hay diferencias en promedio, entre los niveles de CONCENTRACIÓN pero no entre los niveles de CARGA HIDRÁULICA.

Esquema del diseño.

Para el desarrollo del diseño experimental se empleó un análisis estadístico tipo ANOVA DE UNA VÍA PARA UN DISEÑO FACTORIAL donde el TRATAMIENTO, la CARGA y la CONCENTRACIÓN son tres factores.

Hipótesis.

Para el desarrollo del modelo se tienen una hipótesis nula y una alternativa que serán rechazadas ó adoptadas según el método del (valor –p) o nivel de significancia observado, que es el nivel más pequeño en el que se puede rechazar Ho.

Se plantean hipótesis para el modelo y para cada uno de los factores.
Hipótesis Nula (H0): No existe efecto entre los factores y la variable dependiente.

\[H_0 = \beta_t = 0 \]

Hipótesis Alternativa (H1): Existe un efecto entre los factores y la variable dependiente.

\[H_0 = \beta_t \neq 0 \]

Los criterios de selección están regidos por el (valor-p) en relación a \(\alpha \) ó intervalo de confianza del 95\%, como se muestra a continuación en la Figura 2:

![Figura 2. Definición de la zona de aceptación para el diseño experimental.](image)

Donde:

- Se rechaza H0, si el valor-p < \(\alpha \) y es significativa la prueba, es decir, hay efecto del factor sobre la variable dependiente. El valor-p también se conoce como p-value o sig. (de significancia)
- No se rechaza H0, si el valor-p \(\geq \alpha \)
RESULTADOS

Análisis de varianza univariante

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONCENTRACION</th>
<th>CONCENTRACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESINA DE INTERCAMBIO IÓNICO</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>ZEOLITA</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>CARGA HIDRÁULICA</td>
<td>6,00</td>
<td>25,00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>CONCENTRACION</td>
<td>10,00</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>68,37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>150,00</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>30</td>
</tr>
</tbody>
</table>
CONCENTRACIÓN

Variable dependiente: Nivel dureza o hierro

<table>
<thead>
<tr>
<th>CONCENTRACION</th>
<th>Media</th>
<th>Error típ.</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>,12</td>
<td>0,077</td>
<td>2,466</td>
<td>-4,799</td>
<td>4,952</td>
</tr>
<tr>
<td>3,00</td>
<td>0,376</td>
<td>2,466</td>
<td>-4,499</td>
<td>5,252</td>
</tr>
<tr>
<td>10,00</td>
<td>0,275</td>
<td>2,466</td>
<td>-4,601</td>
<td>5,150</td>
</tr>
<tr>
<td>68,37</td>
<td>2,023</td>
<td>2,066</td>
<td>-2,061</td>
<td>6,107</td>
</tr>
<tr>
<td>150,00</td>
<td>6,618</td>
<td>2,307</td>
<td>2,057</td>
<td>11,178</td>
</tr>
<tr>
<td>500,00</td>
<td>21,808</td>
<td>2,211</td>
<td>17,437</td>
<td>26,178</td>
</tr>
</tbody>
</table>

TRATAMIENTO * CARGA HIDRÁULICA

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CARGA HIDRÁULICA</th>
<th>Media</th>
<th>Error típ.</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESINA DE INTERCAMBIO IÓNICO</td>
<td>6,00</td>
<td>1,136</td>
<td>1,856</td>
<td>-2,534</td>
<td>4,806</td>
</tr>
<tr>
<td></td>
<td>25,00</td>
<td>1,456</td>
<td>1,856</td>
<td>-2,214</td>
<td>5,126</td>
</tr>
<tr>
<td>ZEOLITA</td>
<td>6,00</td>
<td>10,933</td>
<td>1,947</td>
<td>7,084</td>
<td>14,781</td>
</tr>
<tr>
<td></td>
<td>25,00</td>
<td>7,259</td>
<td>1,965</td>
<td>3,374</td>
<td>11,144</td>
</tr>
</tbody>
</table>
TRATAMIENTO * CONCENTRACIÓN

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CONCENTRACIÓN</th>
<th>Media</th>
<th>Error típ.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>RESINA DE INTERCAMBIO IÓNICO</td>
<td>0,12</td>
<td>0,095</td>
<td>3,488</td>
<td>-6,800</td>
</tr>
<tr>
<td></td>
<td>3,00</td>
<td>0,537</td>
<td>3,488</td>
<td>-6,358</td>
</tr>
<tr>
<td></td>
<td>10,00</td>
<td>0,039</td>
<td>3,488</td>
<td>-6,855</td>
</tr>
<tr>
<td></td>
<td>68,37</td>
<td>1,750</td>
<td>2,701</td>
<td>-3,591</td>
</tr>
<tr>
<td></td>
<td>150,00</td>
<td>2,142</td>
<td>3,020</td>
<td>-3,828</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>3,214</td>
<td>3,020</td>
<td>-2,757</td>
</tr>
<tr>
<td>ZEOLITA</td>
<td>0,12</td>
<td>0,058</td>
<td>3,488</td>
<td>-6,836</td>
</tr>
<tr>
<td></td>
<td>3,00</td>
<td>0,216</td>
<td>3,488</td>
<td>-6,679</td>
</tr>
<tr>
<td></td>
<td>10,00</td>
<td>0,510</td>
<td>3,488</td>
<td>-6,385</td>
</tr>
<tr>
<td></td>
<td>68,37</td>
<td>2,296</td>
<td>3,126</td>
<td>-3,885</td>
</tr>
<tr>
<td></td>
<td>150,00</td>
<td>11,093</td>
<td>3,488</td>
<td>4,199</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>40,401</td>
<td>3,229</td>
<td>34,018</td>
</tr>
</tbody>
</table>
CARGA HIDRÁULICA * CONCENTRACIÓN

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>CARGA HIDRÁULICA</th>
<th>CONCENTRACION</th>
<th>Media</th>
<th>Error típ.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>6,00</td>
<td>,12</td>
<td>,093</td>
<td>3,488</td>
<td>-6,801</td>
</tr>
<tr>
<td></td>
<td>3,00</td>
<td>,376</td>
<td>3,488</td>
<td>-6,519</td>
</tr>
<tr>
<td></td>
<td>10,00</td>
<td>,150</td>
<td>3,488</td>
<td>-6,745</td>
</tr>
<tr>
<td></td>
<td>68,37</td>
<td>1,946</td>
<td>2,865</td>
<td>-3,718</td>
</tr>
<tr>
<td></td>
<td>150,00</td>
<td>9,308</td>
<td>3,262</td>
<td>2,859</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>24,333</td>
<td>3,126</td>
<td>18,152</td>
</tr>
<tr>
<td>25,00</td>
<td>,12</td>
<td>,060</td>
<td>3,488</td>
<td>-6,835</td>
</tr>
<tr>
<td></td>
<td>3,00</td>
<td>,377</td>
<td>3,488</td>
<td>-6,518</td>
</tr>
<tr>
<td></td>
<td>10,00</td>
<td>,399</td>
<td>3,488</td>
<td>-6,496</td>
</tr>
<tr>
<td></td>
<td>68,37</td>
<td>2,099</td>
<td>2,977</td>
<td>-3,786</td>
</tr>
<tr>
<td></td>
<td>150,00</td>
<td>3,928</td>
<td>3,262</td>
<td>-2,521</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>19,282</td>
<td>3,126</td>
<td>13,102</td>
</tr>
</tbody>
</table>
TRATAMIENTO * CARGA HIDRÁULICA * CONCENTRACIÓN

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>CARGA HIDRÁULICA</th>
<th>CONCENTRACION</th>
<th>Media</th>
<th>Error típ.</th>
<th>Intervalo de confianza 95%</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESINA DE INTERCAMBIO IÓNICO</td>
<td>6,00</td>
<td></td>
<td>.12</td>
<td>.135</td>
<td>4,932</td>
<td>-9,616</td>
<td>9,886</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,00</td>
<td>.593</td>
<td>4,932</td>
<td>-9,157</td>
<td>10,344</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,00</td>
<td>.053</td>
<td>4,932</td>
<td>-9,697</td>
<td>9,804</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68,37</td>
<td>1,750</td>
<td>3,820</td>
<td>-5,803</td>
<td>9,303</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150,00</td>
<td>2,143</td>
<td>4,271</td>
<td>-6,302</td>
<td>10,587</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>2,143</td>
<td>4,271</td>
<td>-6,302</td>
<td>10,587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEOLITA</td>
<td>6,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.12</td>
<td>.055</td>
<td>4,932</td>
<td>-9,696</td>
<td>9,806</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,00</td>
<td>.480</td>
<td>4,932</td>
<td>-9,271</td>
<td>10,231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,00</td>
<td>.025</td>
<td>4,932</td>
<td>-9,726</td>
<td>9,776</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68,37</td>
<td>1,750</td>
<td>3,820</td>
<td>-5,803</td>
<td>9,303</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150,00</td>
<td>2,142</td>
<td>4,271</td>
<td>-6,302</td>
<td>10,587</td>
</tr>
<tr>
<td></td>
<td>500,00</td>
<td>4,285</td>
<td>4,271</td>
<td>-4,159</td>
<td>12,729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRATAMIENTO Hidráulica</td>
<td>CONCENTRACION</td>
<td>Media</td>
<td>Error típ.</td>
<td>Intervalo de confianza 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
<td>Límite superior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150,00</td>
<td>16,473</td>
<td>4,932</td>
<td>6,723</td>
<td>26,224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500,00</td>
<td>46,523</td>
<td>4,566</td>
<td>37,496</td>
<td>55,550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,00</td>
<td>0,12</td>
<td>0,065</td>
<td>9,686</td>
<td>9,816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,00</td>
<td>0,273</td>
<td>4,932</td>
<td>-9,477</td>
<td>10,024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,00</td>
<td>0,773</td>
<td>4,932</td>
<td>-8,977</td>
<td>10,524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68,37</td>
<td>2,449</td>
<td>4,566</td>
<td>-6,579</td>
<td>11,476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150,00</td>
<td>5,713</td>
<td>4,932</td>
<td>-4,037</td>
<td>15,464</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500,00</td>
<td>34,280</td>
<td>4,566</td>
<td>25,253</td>
<td>43,307</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA – Pruebas de los efectos inter-sujetos

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados tipo III</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo corregido</td>
<td>21006,039<sup>a</sup></td>
<td>23</td>
<td>913,306</td>
<td>6,257</td>
<td>.000</td>
</tr>
<tr>
<td>Intersección</td>
<td>4335,466</td>
<td>1</td>
<td>4335,466</td>
<td>29,703</td>
<td>.000</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2442,203</td>
<td>1</td>
<td>2442,203</td>
<td>16,732</td>
<td>.000</td>
</tr>
<tr>
<td>CARGA Hidráulica</td>
<td>112,872</td>
<td>1</td>
<td>112,872</td>
<td>.773</td>
<td>.381</td>
</tr>
<tr>
<td>Origen</td>
<td>Suma de cuadrados tipo III</td>
<td>gl</td>
<td>Media cuadrática</td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>----</td>
<td>------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>CONCENTRACION</td>
<td>10379,210</td>
<td>5</td>
<td>2075,842</td>
<td>14,222</td>
<td>.000</td>
</tr>
<tr>
<td>TRATAMIENTO * CARGA HIDRÁULICA</td>
<td>160,082</td>
<td>1</td>
<td>160,082</td>
<td>1,097</td>
<td>.297</td>
</tr>
<tr>
<td>TRATAMIENTO * CONCENTRACION</td>
<td>7977,975</td>
<td>5</td>
<td>1595,595</td>
<td>10,932</td>
<td>.000</td>
</tr>
<tr>
<td>CARGA HIDRÁULICA * CONCENTRACION</td>
<td>262,686</td>
<td>5</td>
<td>52,537</td>
<td>.360</td>
<td>.875</td>
</tr>
<tr>
<td>TRATAMIENTO * CARGA HIDRÁULICA * CONCENTRACION</td>
<td>401,787</td>
<td>5</td>
<td>80,357</td>
<td>.551</td>
<td>.738</td>
</tr>
<tr>
<td>Error</td>
<td>20580,190</td>
<td>141</td>
<td>145,959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46185,964</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregida</td>
<td>41586,229</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R cuadrado = .505 (R cuadrado corregida = .424)

Se verifica que el p-value o nivel de significancia para el modelo (Sig = .000) el cual es menor al α=0.05, luego se rechaza la hipótesis nula, es decir, hay evidencia estadística para decir que el modelo se ajusta a los datos. Al revisar los factores TRATAMIENTO Y CONCENTRACIÓN se encuentra que el p- value es significativos, es decir, HAY EFECTO DEL TRATAMIENTO y la CONCENTRACIÓN en el nivel dureza o hierro. Esto significa que estos factores, bajo las condiciones del experimento, si explican el nivel de dureza o hierro. Sin embargo, el factor
CARGA HIDRÁULICA no es significativo, luego no tiene efecto sobre el nivel medio de dureza o hierro.

Al revisar el p-value o nivel de significancia para las interacciones (Sig = .000) se encuentra que es significativa la interacción TRATAMIENTO*CONCENTRACIÓN. Se dicen que hay una interacción entre dos o más factores si el efecto de uno de los factores cambia en las diferentes categorías del otro factor, es decir, si el efecto del TRATAMIENTO cambia en las categorías de LA CONCENTRACIÓN o viceversa lo que quiere decir que se el efecto de los dos factores es modificador. La interacción indica, que los efectos de ambos factores no son aditivos, por lo que, si se quieren efectuar estimaciones es necesario estimar dichos efectos agregándolos a los efectos de cada factor por separado.

Pruebas de medias intragrupos

Contraste de hipótesis personalizado #1

<table>
<thead>
<tr>
<th>Contraste simple TRATAMIENTO</th>
<th>Variable dependiente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUREZA O HIERRO</td>
</tr>
<tr>
<td>Estimación del contraste</td>
<td></td>
</tr>
<tr>
<td>Valor hipotetizado</td>
<td>0</td>
</tr>
<tr>
<td>Diferencia (Estimado -</td>
<td>-7,800</td>
</tr>
<tr>
<td>Hipotetizado)</td>
<td></td>
</tr>
<tr>
<td>Error típ.</td>
<td>1,907</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

Nivel 1 respecto a nivel 2

<table>
<thead>
<tr>
<th>Intervalo de confianza al 95 % para la diferencia</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-11,569</td>
<td>-4,030</td>
</tr>
</tbody>
</table>

a. Categoría de referencia = 2
Resultados de la prueba

Variable dependiente: nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraste</td>
<td>2442,203</td>
<td>1</td>
<td>2442,203</td>
<td>16,732</td>
<td>,000</td>
</tr>
<tr>
<td>Error</td>
<td>20580,190</td>
<td>141</td>
<td>145,959</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hay diferencias significativas entre el efecto de la resina y la zeolita

Contrast Results (K Matrix)

Contraste simple CARGA HIDRÁULICA

<table>
<thead>
<tr>
<th>Variable dependiente</th>
<th>DUREZA O HIERRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimación del contraste</td>
<td>1,677</td>
</tr>
<tr>
<td>Valor hipotetizado</td>
<td>0</td>
</tr>
<tr>
<td>Diferencia (Estimado - Hipotetizado)</td>
<td>1,677</td>
</tr>
</tbody>
</table>

Nivel 1 respecto a nivel 2

Error típ.	1,907
Sig.	,381
Límite inferior	-2,093
Límite superior	5,446

a. Categoría de referencia = 2
Resultados de la prueba

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraste</td>
<td>112,872</td>
<td>1</td>
<td>112,872</td>
<td>0,773</td>
<td>0,381</td>
</tr>
<tr>
<td>Error</td>
<td>20580,190</td>
<td>141</td>
<td>145,959</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No hay diferencias significativas entre los efectos de las cargas 6 y 25 m³/m².h

Contrast Results (K Matrix)

Contraste simple CONCENTRACIONa

<table>
<thead>
<tr>
<th>Variable dependiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUREZA O HIERRO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Estimación del contraste</th>
<th>Valor hipotetizado</th>
<th>Diferencia (Estimado - Hipotetizado)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-21,731</td>
<td>0</td>
<td>-21,731</td>
</tr>
</tbody>
</table>

Nivel 1 respecto a nivel 6

<table>
<thead>
<tr>
<th></th>
<th>Error típ.</th>
<th>Sig.</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,312</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervalo de confianza al 95 % para la diferencia

<table>
<thead>
<tr>
<th></th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-28,278</td>
<td>-15,184</td>
</tr>
</tbody>
</table>
Contrast Results (K Matrix)

| Contraste simple CONCENTRACIÓN
elepjdepeljdependiente | DUREZA O HIERRO |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimación del contraste</td>
<td>-21,431</td>
</tr>
<tr>
<td>Valor hipotetizado</td>
<td>0</td>
</tr>
<tr>
<td>Diferencia (Estimado - Hipotetizado)</td>
<td>-21,431</td>
</tr>
<tr>
<td>Nivel 2 respecto a nivel 6</td>
<td></td>
</tr>
<tr>
<td>Error típ.</td>
<td>3,312</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
<tr>
<td>Intervalo de confianza al 95 % para la diferencia</td>
<td></td>
</tr>
<tr>
<td>Límite inferior</td>
<td>-27,979</td>
</tr>
<tr>
<td>Límite superior</td>
<td>-14,884</td>
</tr>
<tr>
<td>Estimación del contraste</td>
<td>-21,533</td>
</tr>
<tr>
<td>Valor hipotetizado</td>
<td>0</td>
</tr>
<tr>
<td>Diferencia (Estimado - Hipotetizado)</td>
<td>-21,533</td>
</tr>
<tr>
<td>Nivel 3 respecto a nivel 6</td>
<td></td>
</tr>
<tr>
<td>Error típ.</td>
<td>3,312</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
<tr>
<td>Intervalo de confianza al 95 % para la diferencia</td>
<td></td>
</tr>
<tr>
<td>Límite inferior</td>
<td>-28,080</td>
</tr>
<tr>
<td>Límite superior</td>
<td>-14,986</td>
</tr>
</tbody>
</table>
Contrast Results (K Matrix)

<table>
<thead>
<tr>
<th>Contraste simple CONCENTRACIONa</th>
<th>Variable dependiente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUREZA O HIERRO</td>
</tr>
<tr>
<td>Estimación del contraste</td>
<td>-19,785</td>
</tr>
<tr>
<td>Valor hipotetizado</td>
<td>0</td>
</tr>
<tr>
<td>Diferencia (Estimado - Hipotetizado)</td>
<td>-19,785</td>
</tr>
</tbody>
</table>

Nivel 4 respecto a nivel 6

<table>
<thead>
<tr>
<th></th>
<th>Error típ.</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,026</td>
<td>.000</td>
</tr>
</tbody>
</table>

Intervalo de confianza al 95 % para la diferencia

<table>
<thead>
<tr>
<th></th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-25,766</td>
<td>-13,803</td>
</tr>
</tbody>
</table>

Estimación del contraste -15,190

Valor hipotetizado 0

Diferencia (Estimado - Hipotetizado) -15,190

Nivel 5 respecto a nivel 6

<table>
<thead>
<tr>
<th></th>
<th>Error típ.</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,195</td>
<td>.000</td>
</tr>
</tbody>
</table>

Intervalo de confianza al 95 % para la diferencia

<table>
<thead>
<tr>
<th></th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-21,506</td>
<td>-8,873</td>
</tr>
</tbody>
</table>

a. Categoría de referencia = 6
Resultados de la prueba

Variable dependiente: Nivel dureza o hierro

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraste</td>
<td>10379,210</td>
<td>5</td>
<td>2075,842</td>
<td>14,222</td>
<td>,000</td>
</tr>
<tr>
<td>Error</td>
<td>20580,190</td>
<td>141</td>
<td>145,959</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hay diferencias significativas entre los efectos de las concentraciones

TRATAMIENTO

Variable dependiente: Nivel dureza o hierro

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Media</th>
<th>Error típ.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>RESINA DE INTERCAMBIO IÓNICO</td>
<td>1,296</td>
<td>1,313</td>
<td>-1,299</td>
</tr>
<tr>
<td>ZEOLITA</td>
<td>9,096</td>
<td>1,383</td>
<td>6,362</td>
</tr>
</tbody>
</table>

Concentración del contaminante

Student-Newman-Keuls

<table>
<thead>
<tr>
<th>CONCENTRACION</th>
<th>N</th>
<th>Subconjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>.12</td>
<td>24</td>
<td>.0767</td>
</tr>
<tr>
<td>10,00</td>
<td>24</td>
<td>.2746</td>
</tr>
</tbody>
</table>
Se muestran las medias de los grupos de subconjuntos homogéneos. Basadas en las medias observadas. El término de error es la media cuadrática (Error) = 145,959.

a. Usa el tamaño muestral de la media armónica = 26,952

b. Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I.

c. Alfa = .05.

El cuadro de post hoc muestra las distintas pruebas post hoc para hacer comparaciones múltiples por parejas o pruebas de rango. Si la conclusión del contraste es rechazar la igualdad de medias se puede plantear qué grupos dos a dos son los que tienen medias significativamente distintas

Esto significa que las dos medias son estadísticamente significativas, es decir, el efecto promedio se divide en menor a 500, y 500; y estos dos son estadísticamente diferentes y a mayor concentración menor nivel de dureza o hierro.
Estimación del modelo

Finalmente el modelo del diseño experimental se encuentra representado por las ecuaciones 1 y 2. Donde se tiene en cuenta la relación de los diferentes factores (TRATAMIENTO Y CONCENTRACION) a diferentes niveles sobre la variable dependiente.

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 \]

Donde

\(Y = \) Variable dependiente DUREZA o HIERRO.

\(\beta_0 = \) Constante (34,280) que representa la intersección del modelo.

\(\beta_1 = \) Coeficiente del factor TRATAMIENTO (-29,995)

\(\beta_2 = \) Coeficiente del factor CONCENTRACIÓN (-34,215)

\(\beta_2 = \) Coeficiente de la interacción de los factores TRATAMIENTO y CONCENTRACIÓN (29,985)

\(X = \) Variable que se ingresará en el modelo

Y reemplazando los valores de los coeficientes, tenemos:

\[Y = 34,280 - 29,995X_1 - 34,215X_2 + 29,985X_1X_2 \]
La Siguiente matriz es la estimación de los parámetros que van en el modelo.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersección</td>
<td>34,280</td>
<td>4,566</td>
<td>7,507</td>
<td>.000</td>
<td>25,253 - 43,307</td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNIC]</td>
<td>-29,995</td>
<td>6,253</td>
<td>-4,797</td>
<td>.000</td>
<td>-42,356 - 17,634</td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00]</td>
<td>12,243</td>
<td>6,458</td>
<td>1,896</td>
<td>.060</td>
<td>-.524 - 25,009</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =25,00]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION=.12]</td>
<td>-34,215</td>
<td>6,721</td>
<td>-5,090</td>
<td>.000</td>
<td>-47,503 - 20,927</td>
</tr>
<tr>
<td>[CONCENTRACION=3,00]</td>
<td>-34,007</td>
<td>6,721</td>
<td>-5,059</td>
<td>.000</td>
<td>-47,294 - 20,719</td>
</tr>
<tr>
<td>[CONCENTRACION=10,00]</td>
<td>-33,507</td>
<td>6,721</td>
<td>-4,985</td>
<td>.000</td>
<td>-46,794 - 20,219</td>
</tr>
<tr>
<td>[CONCENTRACION=68,37]</td>
<td>-31,831</td>
<td>6,458</td>
<td>-4,929</td>
<td>.000</td>
<td>-44,598 - 19,065</td>
</tr>
<tr>
<td>[CONCENTRACION=150,00]</td>
<td>-28,567</td>
<td>6,721</td>
<td>-4,250</td>
<td>.000</td>
<td>-41,854 - 15,279</td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CONCENTRACION= 500,00]</td>
<td>0a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA] * [CARGA HIDRÁULICA =6,00]</td>
<td>-14,385</td>
<td>8,843</td>
<td>-1,627</td>
<td>.106</td>
<td>-31,867</td>
<td>3,096</td>
<td>.</td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =25,00]</td>
<td>0a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[TRATAMIENTO=ZOLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[TRATAMIENTO=ZOLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error típ.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td>Límite inferior</td>
<td>Límite superior</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CONCENTRACION=3,00]</td>
<td>30,202</td>
<td>9,367</td>
<td>3,224</td>
<td>.002</td>
<td>11,683</td>
<td>48,720</td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CONCENTRACION=10,00]</td>
<td>29,247</td>
<td>9,367</td>
<td>3,122</td>
<td>.002</td>
<td>10,728</td>
<td>47,765</td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CONCENTRACION=68,37]</td>
<td>29,296</td>
<td>8,634</td>
<td>3,393</td>
<td>.001</td>
<td>12,228</td>
<td>46,365</td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CONCENTRACION=150,00]</td>
<td>26,424</td>
<td>9,037</td>
<td>2,924</td>
<td>.004</td>
<td>8,559</td>
<td>44,290</td>
<td></td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CONCENTRACION=500,00]</td>
<td>0°a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION=5,12]</td>
<td>0°a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION=3,00]</td>
<td>0°a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION=10,00]</td>
<td>0°a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION=68,37]</td>
<td>0°a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error típ.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td>Límite inferior</td>
<td>Límite superior</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION= 150,00]</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CONCENTRACION= 500,00]</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00] * [CONCENTRACION= 12]</td>
<td>-12,256</td>
<td>9,506</td>
<td>-1,289</td>
<td>.199</td>
<td>-31,048</td>
<td>6,536</td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00] * [CONCENTRACION= 3,00]</td>
<td>-12,358</td>
<td>9,506</td>
<td>-1,300</td>
<td>.196</td>
<td>-31,150</td>
<td>6,434</td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00] * [CONCENTRACION= 10,00]</td>
<td>-12,770</td>
<td>9,506</td>
<td>-1,343</td>
<td>.181</td>
<td>-31,561</td>
<td>6,022</td>
<td></td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error típ.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td>Límite inferior</td>
<td>Límite superior</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>-12,549</td>
<td>8,989</td>
<td>-1,396</td>
<td>,165</td>
<td>-30,319</td>
<td>5,221</td>
</tr>
<tr>
<td>[CONCENTRACION= 68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>-1,483</td>
<td>9,506</td>
<td>-1,156</td>
<td>,876</td>
<td>-20,275</td>
<td>17,309</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =6,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =25,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= ,12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA =25,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 3,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error tít.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td>Límite inferior</td>
<td>Límite superior</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA = 25,00] *</td>
<td>0</td>
<td>.</td>
<td>t</td>
<td>.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 10,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA = 25,00] *</td>
<td>0</td>
<td>.</td>
<td>t</td>
<td>.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA = 25,00] *</td>
<td>0</td>
<td>.</td>
<td>t</td>
<td>.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 150,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CARGA HIDRÁULICA = 25,00] *</td>
<td>0</td>
<td>.</td>
<td>t</td>
<td>.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION= 500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

 Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>14,479</td>
<td>13,248</td>
<td>1,093</td>
<td>.276</td>
<td>-11,711</td>
</tr>
<tr>
<td>[CONCENTRACION= .12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>14,614</td>
<td>13,248</td>
<td>1,103</td>
<td>.272</td>
<td>-11,576</td>
</tr>
<tr>
<td>[CONCENTRACION= 3,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>14,941</td>
<td>13,248</td>
<td>1,128</td>
<td>.261</td>
<td>-11,249</td>
</tr>
<tr>
<td>[CONCENTRACION= 10,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>14,691</td>
<td>12,103</td>
<td>1,214</td>
<td>.227</td>
<td>-9,235</td>
</tr>
<tr>
<td>[CONCENTRACION=68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>3,625</td>
<td>12,780</td>
<td>,284</td>
<td>,777</td>
<td>-21,640</td>
</tr>
<tr>
<td>[CONCENTRACION=150,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =6,00]</td>
<td>0a</td>
<td>, , ,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>[CONCENTRACION=500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a No se proporcionan valores para este parámetro.
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA =25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= .12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA=25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 3,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RESINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA=25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 10,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA=25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA=25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 150,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=RE SINA DE INTERCAMBIO IÓNICO] * [CARGA HIDRÁULICA=25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimaciones de los parámetros

Variable dependiente: Nivel dureza o hierro.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>B</th>
<th>Error típ.</th>
<th>t</th>
<th>Sig.</th>
<th>Intervalo de confianza 95%</th>
<th>Límite inferior</th>
<th>Límite superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 3,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 10,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0(^a)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error típ.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
<td>Límite superior</td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00] *</td>
<td>0^a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION=150,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =6,00]</td>
<td>0^a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION=500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00] *</td>
<td>0^a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION=,12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0^a</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>[CONCENTRACION=3,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetro</td>
<td>B</td>
<td>Error típ.</td>
<td>t</td>
<td>Sig.</td>
<td>Intervalo de confianza 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>----</td>
<td>------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Límite inferior</td>
<td>Límite superior</td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 10,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 68,37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 150,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TRATAMIENTO=ZE OLITA] * [CARGA HIDRÁULICA =25,00]</td>
<td>0<sup>a</sup></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[CONCENTRACION= 500,00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Al parámetro se le ha asignado el valor cero porque es redundante.