IMPLEMENTACIÓN DE UNA METODOLOGIA DE OPERACIÓN EN LOS SISTEMAS DE PROTECCIONES ELÉCTRICAS EN SUBESTACIONES DE ALTA TENSIÓN MEDIANTE EL ESTANDAR IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT)

EDUARDO JOSÉ MOLINA OCHOA

UNIVERSIDAD DE LA SALLE
INGENIERÍA ELÉCTRICA
BOGOTA
2008
IMPLEMENTACIÓN DE UNA METODOLOGÍA DE OPERACIÓN EN LOS SISTEMAS DE PROTECCIONES ELÉCTRICAS EN SUBESTACIONES DE ALTA TENSIÓN MEDIANTE EL ESTÁNDAR IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT)

EDUARDO JOSÉ MOLINA OCHOA

TRABAJO DE GRADO

Proyecto de grado para optar por el título de Ingeniero Electricista

Director
Ing. Oscar David Florez Cediel

UNIVERSIDAD DE LA SALLE
INGENIERÍA ELÉCTRICA
BOGOTÁ
2008
NOTA DE ACEPTACIÓN

__________________________
__________________________
__________________________
__________________________

Firma del presidente del jurado

__________________________
Firma del jurado

__________________________
Firma del jurado

Este trabajo de grado libra de toda responsabilidad a la universidad, a los jurados y al director de tesis que intervinieron en el desarrollo y corrección de la misma.
DEDICATORIA

Las grandes cosas comienzan con un sueño, este fue mi sueño ser ingeniero electricista, a ti señor todo poderoso te doy las gracias por haber hecho de mí un hombre de bien.

Gracias a todas esas personas que me apoyaron y me ayudaron hacer realidad este sueño. Mami te dedico este trabajo de grado, por que fuiste el motorcito que día a día me impulsaba a ser una mejor persona y la pieza clave que estuvo a mi lado en los momentos malos como en los buenos y juntos escalamos todos los peldaños que me llevaron a ser la persona que tu también una vez soñaste que fuera.

A mi papá que fue el que aporto el primer grano para que este gran sueño se comenzara a hacer realidad, no me he olvidado de las personas que han estado a mi lado ayudándome y apoyándome en la parte final de mi sueño.

Lorena tu también hiciste que esto fuera realidad y al lado de mi mami fueron las dos piezas claves para armar el rompecabezas.

Muchas gracias a todos, los tengo en mi corazón y los amo mucho.
TABLA DE CONTENIDO

INTRODUCCIÓN ......................................................................................................................... 9

OBJETIVOS ESPECÍFICOS ........................................................................................................ 11

1  MARCO TEÓRICO Y CONCEPTUAL DE LAS PROTECCIONES ELÉCTRICAS ............................... 12

   1.1 DESARROLLO HISTÓRICO .................................................................................................. 12

   1.2 EXIGENCIAS BÁSICAS DE LOS EQUIPOS DE PROTECCIÓN .............................................. 12

   1.3 NOMENCLATURA UTILIZADA EN LAS PROTECCIONES SEGÚN EL ESTANDAR ANSI/IEEE C37.2 - 1996. ........................................................................................................................................ 13

   1.4 OBJETIVO BÁSICO DE UN SISTEMA DE PROTECCIÓN ...................................................... 14

   1.5 RELÉS ELECTROMECÁNICOS .............................................................................................. 14

   1.6 EQUIPOS DE PROTECCIÓN ................................................................................................ 16

   1.7 EQUIPOS NECESARIOS PARA EL FUNCIONAMIENTO DE LOS RELÉS DE PROTECCIÓN ........ 17

       1.7.1 TRANSFORMADORES DE POTENCIAL ....................................................................... 17

       1.7.2 TRANSFORMADORES DE CORRIENTE ........................................................................ 19

2  EVOLUCIÓN DE LAS PROTECCIONES ELÉCTRICAS ............................................................ 21

   2.1 RELÉS ELECTROMECÁNICOS ............................................................................................ 21

   2.2 RELÉS ESTÁTICOS ............................................................................................................. 21

   2.3 RELÉS DIGITALES Y RELÉS NUMÉRICOS ......................................................................... 22

   2.4 COMPARACIÓN DE PROTECCIONES ELÉCTRICAS ................................................................ 22

   2.5 EVOLUCIÓN DE LOS IED DE PROTECCIÓN Y COMUNICACIÓN ...................................... 26

3  APLICACIÓN DE LA NORMA IEC 61850 ............................................................................ 28

   3.1 PARADIGMA DE LAS COMUNICACIONES EN LAS SUBESTACIONES ................................ 28

   3.2 DISPOSITIVOS INTELIGENTES ............................................................................................. 29

   3.3 NORMA IEC 61850 ............................................................................................................. 30

   3.4 NUEVAS OPORTUNIDADES PARA LOS CLIENTES ............................................................... 31

   3.5 COMPARACIÓN DE PROTOCOLOS DE COMUNICACIÓN ................................................ 35

4  METODOLOGÍA DE PRUEBAS EN LOS ESQUEMAS MODERNO Y CLÁSICOS DE PROTECCIÓN .. 37

   4.1 ESQUEMA MODERNO DE PRUEBAS DE PROTECCIÓN .................................................. 37

   4.2 IMPLEMENTACIÓN DE LA FUNCIÓN DE RECIEGRE ATRAVÉS DEL PROTOCOLO IEC 61850 . 39

       4.2.1 ESQUEMA DE INTERRUPTOR IMEDI O ........................................................................... 39

       4.2.2 PRINCIPIOS OPERATIVOS .................................................................................................. 40

       4.2.3 IMPLEMENTACIÓN DEL GOOSE ..................................................................................... 41

       4.2.4 CONSECUENCIAS DE LA IMPLEMENTACIÓN ................................................................... 45

LISTADO DE TABLAS ...................................................................................................................... 6

LISTADOS DE FIGURAS .................................................................................................................. 7

SIGLAS Y ABREVIATURAS ........................................................................................................... 8

CONCLUSIONES ........................................................................................................................... 48

BIBLIOGRAFÍA ............................................................................................................................... 49

CÓDIGO: 42002007 EDUARDO JOSE MOLINA OCHOA

5
LISTA DE TABLAS

Tabla 1. Nomenclatura de las Protecciones ................................................................. 13
Tabla 2. Evolución de las protecciones eléctricas .......................................................... 22
Tabla 3. Comparación de protecciones eléctricas antiguas ........................................ 23
Tabla 4. Comparación de protecciones eléctricas modernas ..................................... 24
Tabla 5. Comparación de Algunos Protocolos Utilizados en Automatización de S/E Eléctricas. ........ 35
Tabla 6. Diferencia entre Esquemas de pruebas de protecciones eléctricas ...................... 36
Tabla 7. Arreglo de Informacion via GOOSE (generic object oriented substation event) recibido del corte CA ................................................................. 42
Tabla 8. Arreglo de Información via GOOSE (generic object oriented substation event) recibo CB ....43
Tabla 9. Arreglo de información via GOOSE (generic object oriented substation event) recibido CA ....45
LISTA DE FIGURAS

Figura 1. Esquema de protección de línea mediante un relé electromecánico de armadura móvil......15
Figura 2. Relé de Electromecánico Temporizado .............................................................................15
Figura 3: Esquema de los transformadores de potencial ................................................................18
Figura 4: Esquema de los transformadores de intensidad o de corriente .......................................19
Figura 5. Registrador de eventos ......................................................................................................25
Figura 6. Evolucion de IEDs ...............................................................................................................27
Figura 7: Sistema de automatización según IEC 61850 ..................................................................32
Figura 8: Arquitetura de redes de comunicación ..............................................................................33
Figura 9. Metodología de pruebas en esquemas modernos de protección ....................................37
Figura 10. Cableado convencional en subestación de 230 kV ........................................................38
Figura 11. Cableado moderno utilizando la norma IEC 61850 ........................................................38
Figura 12. Unifilar S/E Zapallal ........................................................................................................39
**SIGLAS Y ABREVIATURAS**

**GOOSE:** Generic Object Oriented Substation Event  
**IED:** Intelligen Electronic Device  
**21P:** Protección de distancia Principal  
**LCA:** Línea corte A  
**21S:** Protección de distancia Secundaria  
**79:** Función de Recierre  
**CA:** Corte A  
**CB:** Corte B  
**CC:** Corte C  
**LCC:** Línea corte C  
**BCU:** Unidad de control de Bahia  
**PT:** Transformador de Potencial  
**CT:** Transformador de corriente  
**CFC:** Ventana de configuración de lógicas de control en los relés Siemens  
**D3CA_21P:** Diametro tres corte A protección principal de distancia  
**MCBPTLCA:** Minicircuit Breaker del transformador de potencial de la línea del corte A  
**D3CA_79:** Diametro tres corte A protección de recierre  
**IntCBBlqParaLCA:** Interruptor C bloqueado para la línea corte A  
**IntCALider:** Interruptor corte A lider  
**CC_IntFTAb:** Corte C interruptor  
**BLQ79Mono-LCA:** Bloqueo recierre monopolar en la línea del corte A  
**INT:** Interruptor  
**D3CC_BCU:** Diametro tres corte C unidad de control de bahia  
**79-MonoON-1:** Recierre monopolar activado  
**Trip 3p:** Disparo tripolar  
**Trip 1p:** Disparo monopolar  
**79 Pick Up:** arranque de la protección de recierre  
**D3CC_21S:** Diametro corte C protección secundaria de distancia  
**LCC21PDisD:** Disparo definitivo protección principal de distancia de la línea corte C  
**CA_SL_Abi:** Corte A seccionador de línea Abierto  
**BLOQRecMono:** Bloqueo recierre monopolar  
**CA_BIq791p:** Corte A bloqueo recierre monopolar  
**LCA21PDisD:** Disparo definitivo protección distancia de respaldo de la línea corte A  
**LCA21STr3p:** Disparo tripolar protección distancia secundaria de la línea corte A
INTRODUCCIÓN

En los sistemas convencionales de protección, medición, control y supervisión para subestaciones de alta tensión, el desempeño de las diversas funciones ha sido tradicionalmente realizado por equipos y componentes discretos. La interconexión entre dichos equipos y los sistemas primarios de alta tensión, para su correcto funcionamiento, siempre han implicado un gran trabajo de ingeniería, cableado, montaje y puesta en servicio.

Actualmente, la tecnología de control numérico ha reducido notablemente el número de componentes distintos o equipos, lo cual ha aumentado la disponibilidad del sistema y ha reducido los costos asociados al mismo. Adicionalmente, el uso de redes LAN (“Local Area Network”) de alta velocidad para la transmisión de datos ahorra de manera considerable el volumen de cableado, y permite, gracias a su inmunidad a las interferencias electromagnéticas (en el caso de la fibra óptica) su utilización lo más cerca posible del proceso primario.

En este trabajo de grado se tendrá una filosofía explicativa del funcionamiento de los esquemas clásicos de protecciones eléctricas, empezando con un Capítulo I el cual se basa en el marco teórico y conceptual de todos los elementos que forman parte de la protección eléctrica en una subestación de energía.

En el Capítulo II se mostrará la evolución de las protecciones eléctricas en el tiempo hasta la actualidad y que diferencias se han presentado en cada cambio.

El Capítulo III comienza mostrando un desarrollo que ha modernizado y el cual se perfil para reemplazar los sistemas clásicos de protecciones eléctricas, este tipo de avance se ha logrado a través del uso de IEDs (“Intelligent Electronic Device”) basados en microprocesadores que ofrecen nuevas posibilidades tales como autosupervisión, análisis de señales, facilidades computacionales para los algoritmos de protección, y control, almacenamiento de datos, manejo de eventos y análisis de fallas.

Los desarrollos en esta área, aprovechando las nuevas tendencias tecnológicas han logrado una reducción significativa de espacio físico requerido para la instalación de los sistemas de protección, medición, control y supervisión, así como una significativa reducción en la cantidad de cable utilizado. Lo cual influye directamente en una reducción en los costos del proyecto, mejoras en la operación, reducción y planificación del mantenimiento, y brindan una serie de beneficios que representan ventajas importantes a la hora de compararlos con los sistemas convencionales.
El Capítulo IV se basa en determinar cómo se realizan las pruebas a los sistemas de protección eléctricas basados en esquemas de comunicación, también se mostrará un esquema comparativo en el cual se presentará un ejemplo aplicativo en el cual se muestra la funcionalidad de la norma IEC 61850 y la diferencia con respecto a los esquemas gerárquicos o de cableado convencional.
Objetivos

Objetivo General

Implementar una metodología que permita actualizar los conceptos en los sistemas de protección eléctricas en subestaciones de alta tensión por medio del nuevo estándar IEC 61850 GOOSE (Generic Object Oriented Substation Event).

Objetivos Específicos

- Diagnosticar la eficiencia de los esquemas clásicos de protección utilizados en las subestaciones de alta tensión.

- Comparar mediante información disponible la metodología convencional y la metodología que aplica el estándar IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) en pruebas de relés de protección.

- Analizar mediante la información disponible el desempeño de este nuevo estándar IEC 61850 con el nuevo concepto de mensaje de comunicación a nivel de IED (“Intelligen Electronic Device”) llamado GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT)
1 MARCO TEÓRICO Y CONCEPTUAL DE LAS PROTECCIONES ELÉTRICAS

1.1 DESARROLLO HISTÓRICO

Con la interrupción, hacia finales del siglo XIX, de los primeros sistemas eléctricos alternos, empezaba una etapa entonces apenas insospechable del desarrollo de la energía eléctrica.

El crecimiento de los sistemas eléctricos fue generando unas necesidades auxiliares, entre las cuales se incluyen los sistemas de protección. Entre las muchas clasificaciones que podrían establecerse por el desarrollo histórico, se ha elegido la que fija etapas bien definidas en la evolución de los sistemas de protección.

1.2 EXIGENCIAS BÁSICAS DE LOS EQUIPOS DE PROTECCIÓN

La protección ideal sería aquella que actuara solamente ante los disturbios para los que ha sido instalada y que lo hiciera en el menor tiempo posible. Lo ideal en los equipos eléctricos no aplica por esta razón en una protección, se deben valorar los siguientes puntos:

1. **Seguridad.** La probabilidad de no actuación de un sistema o componente cuando debe hacerlo.

2. **Obediencia.** La probabilidad de actuación de un sistema o componente cuando debe hacerlo.

3. **Fiabilidad.** La probabilidad de que un sistema o componente actue unica y exclusivamente cuando debe hacerlo.

4. **Precisión.** La respuesta a los valores de entrada.

5. **Rapidez.** El tiempo invertido desde la aparición del incidente hasta el momento en que el relé cierra sus contactos.

6. **Flexibilidad.** Es la facilidad que tiene un equipo para adaptarse a cambios funcionales.

---

1 Sangra Montane, Paulino Protecciones en las instalaciones eléctricas evolución y perspectivas Segunda Edición en español. MARCOMBO S.A. Gran vía de les corts catalanes, 594 08007 Barcelona (España).
7. **Simplicidad.** En el diseño, reduciendo al mínimo el número de funciones e interacciones.

8. **Mantenimiento.** Reducción al mínimo de piezas sujetas a desgaste, evitando el mantenimiento periódico.

9. **Facilidades de pruebas.** Se valora que el equipo tenga incorporados dispositivos que faciliten su verificación sin que sea necesario modificar su funcionamiento para realizar las pruebas.

10. **Autodiagnóstico.** La inclusión de funciones de autoverificación en la protección, esta es una de las ventajas que aportan las protecciones digitales.

11. **Modularidad.** El montaje de las protecciones en módulos enchufables posibilita la localizacion y reparacion de las averias.

12. **Precio.** Un costo muy reducido.

### 1.3 NOMENCLATURA UTILIZADA EN LAS PROTECCIONES SEGÚN EL ESTANDAR ANSI/IEEE C37.2 - 1996.

En el listado siguiente se observarán los números que frecuentemente se utilizan para nombrar el ajuste que presente la protección.

**Tabla 1. Nomenclatura de las Protecciones**

<table>
<thead>
<tr>
<th>Número de la Función de Ajuste del Relé</th>
<th>Función de Protección</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Relé de Distancia</td>
</tr>
<tr>
<td>24</td>
<td>Sobreexcitación (Voltios/Hertz)</td>
</tr>
<tr>
<td>25</td>
<td>Sincronización</td>
</tr>
<tr>
<td>27</td>
<td>BajoVoltaje</td>
</tr>
<tr>
<td>32</td>
<td>Potencia Direccional</td>
</tr>
<tr>
<td>40</td>
<td>Pérdida de Excitación (Campo)</td>
</tr>
<tr>
<td>46</td>
<td>Balance de Fases (Balance de corrientes, Corrientes de secuencia negativa)</td>
</tr>
<tr>
<td>47</td>
<td>Secuencia de Fases de Voltaje</td>
</tr>
<tr>
<td>49</td>
<td>Sobrecarga Termica</td>
</tr>
<tr>
<td>50</td>
<td>Sobrecorriente Instantanea</td>
</tr>
<tr>
<td>51</td>
<td>Sobrecorriente Temporizada</td>
</tr>
<tr>
<td>59</td>
<td>SobreVoltaje</td>
</tr>
</tbody>
</table>
1.4 **Objetivo Básico de un sistema de protección**

El objetivo fundamental de un sistema de protección es proveer un aislamiento de un área en falla o de un sistema, rápidamente; de esta manera se puede mantener el sistema de potencia en servicio, de acuerdo a este contexto hay cinco facetas básicas para la utilización de un relé de protección.

Se debe entender que el término de protección no indica o implica que el equipo de protección pueda prevenir un problema. Este no puede anticipar el problema. El relé de protección actúa solo después de que una condición anormal o intolerable ha ocurrido, con la suficiente indicación para permitir su operación.

Es decir, la protección no debe pensarse como una prevención, pero esta minimiza la duración del problema y limita el daño, el tiempo de fuera de operación y problemas relacionados que puedan desencadenar ese resultado.

Las cinco facetas básicas son:

1. **Fiabilidad**: Asegura que la protección funcionará correctamente.
2. **Selectividad**: Asegura que la protección opera dentro de los límites permitidos.
3. **Velocidad de la operación**: Mínima duración de la falla.
4. **Simplicidad**: Mínimo equipamiento de protección.
5. **Económico**: Máxima protección a mínimo costo.

1.5 **Relés electromecánicos**

Estos fueron las formas iniciales de relés de protección que se utilizaron en los sistemas de potencia. Funcionan con el principio de la fuerza mecánica que causa la operación de un contacto en respuesta a un estímulo. La fuerza mecánica se genera a través del flujo de corriente en uno o más devanados de una o varias bobinas, de ahí el nombre electromecánico\(^2\)

---

Figura 1. Esquema de protección de línea mediante un relé electromecánico de armadura móvil

El funcionamiento de un relé electromecánico utilizado en los esquemas clásicos de protecciones eléctricas muestra de una manera sencilla los dos parámetros básicos para su funcionamiento, el núcleo o relévador contiene en sus extremos dos bobinas las cuales son una de operación y la otra de restricción logrando con estas dos bobinas sensar los cambios en la operación normal del equipo protegido para el caso se refiere a una línea de transmisión.

Figura 1. Fuente: Sangra Montane, Paulino Protecciones en las instalaciones eléctricas evolución y perspectivas Segunda Edición en español. MARCOMBO S.A. Gran vía de les corts catalanes, 594 08007 Barcelona (España).

Figura 2. Relé de Electromecánico Temporizado

A estos relés se les conoce también por relés Ferraris, y se basan en el principio de la rueda de Barlow es decir, el mismo principio que utilizan los medidores. Su estructura básica consta de un disco móvil que gira sobre un eje y que deja un entrehierro con respecto a los núcleos magnéticos de las bobinas inductoras. Sobre el eje de la rueda va instalado un muelle antagonista solidario al contacto móvil. Cuando el par inducido en el disco sea superior al par resistente del muelle, el disco girará hasta conseguir que el contacto móvil haga presión sobre el contacto fijo (ambos pertenecientes al circuito de mando para la actuación de la protección). Estos relés son de aplicación general por las multiples combinaciones que admiten.
Las principales ventajas de este tipo de relés son robustez, simplicidad y economía. Estas ventajas hacen de los relés electromagnéticos unos candidatos ideales para ser utilizados como relés de tensión de intensidad. Por contrario, este tipo de relé tiene sus desventajas como son la dificultad de ajustes y de regulación de los mismos.

1.6 EQUIPOS DE PROTECCIÓN

Las definiciones siguientes son utilizadas generalmente en relación con la protección del sistema de potencia:

- **Equipo de protección**: un conjunto de dispositivos de protección (relés, fusibles, etc.). Se excluyen dispositivos como TC’s, mini interruptores, contactores, etc.

- **Sistema o esquema de protección**: un conjunto completo de equipos de protección (relés) y otros dispositivos (TP’s, TC’s, baterías, mini interruptores, etc.) requeridos para lograr una función específica con base en la protección principal.

Para cumplir los requerimientos de protección con la rapidez óptima para los diferentes tipos de configuraciones, condiciones de operación y características de construcción del sistema de potencia, ha sido necesario desarrollar muchos tipos de relés que respondan a varias funciones de las variables del sistema de potencia (corriente, voltaje, frecuencia, potencia, impedancia, etc.)

Por ejemplo, la medida de la magnitud de la corriente de falla es suficiente en algunos casos, pero la medida de la potencia o la impedancia puede ser necesaria en otros casos. Frecuentemente los relés miden funciones complejas...
de las variables del sistema de potencia, las cuales solamente se pueden leer o expresar de forma gráfica o matemática³.

Los relés se pueden clasificar de acuerdo con la tecnología utilizada:

- Electromecánico.
- Estático.
- Digital.
- Numérico

Estos diferentes tipos tienen capacidades distintas, debido a las limitaciones de la tecnología utilizada.

En muchos casos no es posible proteger contra todas las fallas con un relé que responda a una sola variable del sistema de potencia. Se requiere un arreglo que utilice diferentes variables. En este caso, se pueden usar varios relés que respondan a una sola variable, o más comúnmente, un solo relé que contenga varios elementos, cada uno respondiendo a una variable distinta.

1.7 EQUIPOS NECESARIOS PARA EL FUNCIONAMIENTO DE LOS RELÉS DE PROTECCIÓN.

1.7.1. Transformadores de Potencial

Este equipo es de vital importancia a la hora de instalar un relé de protección ya que este equipo es el que se encarga de reducir el nivel de tensión primario a un nivel secundario el cual el relé pueda hacer una conversión uno a uno, este tipo de conversión se tiene normalizada con relaciones como se muestran a continuación: El voltaje secundario se varía dependiendo del tipo de norma de construcción.

Generalmente los valores normalizados son:

IEC = 100, 100/√3, 110, 110/√3, 115, 115/√3

ANSI = 120 y 120/√3 para transformadores menores de 25 kV, 115 y 115/√3 para los mayores de 34 kV

Cuando se comienza a parametrizar un relé de protección numérico, digital o electromecánico el RTP (Relacion de Transformación de potencial) a nivel secundario debe de ser correcto ya que si al relé se le coloca la base del sistema de potencia errónea los resultados que se tendrán serán erróneos por esta razón se debe tener muy encuesta la placa característica de los transformadores de potencial, obtenido ese dato se procede a calcular el valor secundario el cual se debe insertar en el relé para su correcto funcionamiento:

\[
\frac{V_{primario}}{V_{secundario}} = \frac{13800}{115} = 120
\]

\[
\frac{V_{primario}}{\sqrt{3}} = \frac{13800/\sqrt{3}}{120/\sqrt{3}} = 115
\]
Con estas fórmulas se pueden corroborar los valores de cualquier transformador de potencial, antes de cargarle los ajustes a cualquier relé de protección eléctrica.

1.7.2 Transformadores de Corriente

Los transformadores de corriente se encargan de convertir la intensidad primaria del equipo protegido a valores secundarios para que la protección los pueda interpretar.

Esta relación de transformación es muy crítica ya que ella es la que se encarga de establecer si el equipo protegido presenta una falla de aislamiento y si la protección no se encuentra ajustada con los valores de relación de transformación de corriente que le indiquen al relé que se presentó una falla el relé no actuará llevando esto a consecuencias muy graves.

Es de resaltar que estos equipos cuando se estén colocando en servicio se deben dejar cortocircuitados los núcleos que tenga el transformador de corriente ya que si se dejan abiertos y comienza a circular corriente en los núcleos se pueden quemar, colocando en riesgo la vida de las personas allí presentes.

Figura 4: Esquema de los Transformadores de Intensidad o de corriente

Son transformadores de medida en los cuales la intensidad secundaria es, en condiciones normales de uso, prácticamente proporcional a la intensidad primaria, desfasada con relación a la misma en un angulo próximo a cero, para unas conexiones apropiadas.

Son muy parecidos a un transformador de potencia monofásico, aunque presentan ciertas diferencias fundamentales:

1. El primario esta dispuesto en serie con el circuito principal, mientras los transformadores de potencia lo están en paralelo.

2. La corriente primaria es, en todo momento, independiente de la carga conectada al secundario.

3. La carga secundaria debe ser minima, funcionando con el secundario en condiciones similares a las de cortocircuito.

La primera clasificación que se puede establecer para los transformadores de corriente es según se utilicen para protección o para medida. Estos últimos deben mantener su precisión hasta el nivel de corriente próximo a la nominal, y es conveniente que se saturen rápidamente cuando esta se sobrepasa, con objeto de proteger los instrumentos de medida.
En los transformadores de corriente se presenta una estandarización para el núcleo primario. A continuación se presentan las cantidades expresadas en las normas IEC y ANSI.

**IEC:** 10 - 12.5 - 20 - 25 - 30 - 40 - 50 - 60 - 75 y sus múltiplos decimales.


Las corrientes secundarias nominales son los valores recomendados por la IEC para corriente nominal secundaria: 1, 2 y 5 A. El valor normalizado por la ANSI es de 5 A.

Se denomina relación de transformación de corriente (RTC) a la relación entre la corriente nominal primaria y la corriente nominal secundaria, por ejemplo:

I nominal primaria = 600 A  
I nominal secundaria = 5 A

$$\frac{I_{primaria}}{I_{secundaria}} = \frac{600}{5} = 120$$

Cuando se tiene una bobina secundaria con múltiples derivaciones, las combinaciones de éstas dan diferentes relaciones. Se denominan "Multi-ratio" y por ejemplo un transformador de 600/5 tendría relaciones de valores secundarios 100 – 200 – 300 – 400 – 500 – 600/5.
2 EVOLUCIÓN DE LAS PROTECCIONES ELÉCTRICAS

2.1 Relés Electromecánicos

El dispositivo de protección natural, es el fusible, inventado en los inicios de la electrotecnia, aprovechando el fenómeno físico de la fusión por calor. Aparecieron luego aplicaciones de otros fenómenos, por ejemplo la deformación del bimetal, que utilizaba el cambio de curvatura de una placa bimetálica que desenganchaba el mecanismo de apertura de un interruptor.

Una bobina (solenoide) con corriente encima de cierto valor atraía el vástago, desenganchando el mecanismo de disparo. El disco de Ferraris (ver figura 2), retenido por un resorte antagónico, avanza tardando más o menos tiempo, hasta cerrar el contacto de disparo.

La edad de oro de los relés electromecánicos perduró hasta pasados los años 1950, después tímidamente apareció la electrónica analógica con rectificadores, transistores, circuitos integrados, con formas de medición más perfeccionadas.

Conversores que medían la corriente transformando corriente alterna en continua, con un rectificador de puente, mostrando importantes errores en presencia de armónicas, y conversores de verdadero valor eficaz, que no tenían ese error, pero costaban mucho más, esta tecnología en 1980 comenzó a ser superada por la electrónica digital.

La señal que interesa se muestrea y se digitaliza, la serie de valores digitalizados es sometida a cálculos que presentan el valor de interés de la variable. La técnica pasó de apoyarse en fenómenos físicos, a utilizar algoritmos numéricos.

Las explicaciones que siguen, se desarrollan alrededor de dispositivos tradicionales analógicos y en algunos casos se agregan comentarios validos para los dispositivos más modernos.

2.2 Relés estáticos

El término estático se refiere a que el relé no tiene partes móviles. No es estrictamente el caso para un relé estático ya que los contactos de salida son generalmente relés mecánicos. En un relé de protección el término estático se refiere a que el relé no utiliza partes móviles para crear la característica del relé.

Su diseño está basado en el uso de elementos electrónicos análogos en vez de bobinas e imanes para crear la característica del relé. Las primeras versiones utilizaron elementos discretos como transistores y diodos en conjunto con
resistencias, condensadores, inductores, etc., pero los avances de la electrónica permitieron el uso de circuitos integrados líneas y digitales en las versiones posteriores para el procesamiento de las señales e implementación de funciones lógicas.

2.3 Relés digitales y relés numéricos

Los relés digitales introdujeron un cambio importante de tecnología. Los circuitos análogos utilizados en los relés estáticos, fueron remplazados por microprocesadores y microcontroladores, para implementar las funciones de los relés. Comparados con los relés estáticos, los relés digitales utilizan conversión análoga/digital (A/D) de todas las variables análogas medidas.

Los relés numéricos son desarrollos de los relés digitales como resultado del avance de la tecnología. Típicamente utilizan un procesador de señal digital, acompañado de un software asociado, este software con el cual se puede acceder a los relés de control numérico contiene un ambiente propio de la empresa que lo haya creado. La continua reducción en el costo de los microprocesadores y de los elementos digitales asociados, lleva naturalmente a que un solo equipo es utilizado para proveer un rango de funciones que anteriormente eran implementadas por equipos separados.

2.4 Comparación de protección eléctricas

Tabla 2. Evolución de las protecciones eléctricas

<table>
<thead>
<tr>
<th>EVOLUCION DE RELÉS DE PROTECCIÓN</th>
<th>AÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELÉS ELECTROMECÁNICOS</td>
<td>Hasta 1970</td>
</tr>
<tr>
<td>RELÉS ESTÁTICOS</td>
<td>Desde 1985</td>
</tr>
<tr>
<td>RELÉS DIGITALES</td>
<td>Hasta 1994</td>
</tr>
<tr>
<td>RELÉS NUMERICOS</td>
<td>En la actualidad</td>
</tr>
</tbody>
</table>

Fuente: El Autor

La evolución de las protecciones eléctricas hasta la actualidad ha sufrido grandes cambios que se transforman en mejoramiento, rapidez y economía a la hora de pensar en realizar un proyecto eléctrico, en la Tabla 2 se puede

CODIGO: 42002007 EDUARDO JOSÉ MOLINA OCHOA
observar fechas estimadas en las que cada relé de protección marcaba la diferencia respecto a la protección que se encontraba en el momento.

Tabla 3. Comparación de protecciones eléctricas antiguas

<table>
<thead>
<tr>
<th>COMPARACIÓN DE RELÉS DE PROTECCIÓN ELECTRICA DE ESTADO SÓLIDO CONTRA LOS RELÉS ELECTROMECÁNICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RELÉS ELECTROMECÁNICOS</strong></td>
</tr>
<tr>
<td>CONSUMO DE POTENCIA MÁS BAJO</td>
</tr>
<tr>
<td>VELOCIDAD EN TIEMPOS DE APERTURA</td>
</tr>
<tr>
<td>SENSIBILIDAD A LAS INTERFERENCIAS ELECTROMECÁNICAS</td>
</tr>
<tr>
<td>BAJO COSTO DE MANTENIMIENTO</td>
</tr>
<tr>
<td>TIEMPO DE MONTAJE (MÍNIMO CABLEADO)</td>
</tr>
<tr>
<td>CAPACIDAD DE COMUNICACIÓN</td>
</tr>
<tr>
<td>FUENTE DE PODER UNIVERSAL</td>
</tr>
<tr>
<td>MÚLTIPLES JUEGOS DE CONTACTOS</td>
</tr>
<tr>
<td>COSTO DE COMPRA DEL EQUIPO</td>
</tr>
<tr>
<td>AJUSTE SENCILLO</td>
</tr>
<tr>
<td>AMPLIA GAMA DE CARACTERÍSTICAS PARA PROTECCIONES MÁS EFECTIVAS</td>
</tr>
<tr>
<td>ALMACENAMIENTO HISTÓRICO DE EVENTOS</td>
</tr>
</tbody>
</table>

Fuente: El Autor

Las diferencias que se marcan comparando una protección electromecánica con respecto a una de estado sólido como lo muestra la Tabla 3, se traducen en mejoría para el sistema a proteger y para facilitarle al operador de las mismas a la hora de realizar mantenimientos preventivos, también se reduce en un porcentaje el cableado logrando tener menos puntos de falla dentro del sistema de control y protección presentes en las subestaciones eléctricas de alta tensión.

La diferencia con las protecciones tradicionales (analógicas) es que el proceso de la información se realiza convirtiendo la información analógica por medio de los adecuados transductores en información discretizada, luego procesada en esta forma y luego vuelta a convertir en información analógica de control del sistema de potencia. Se presenta en la tabla 4 una comparación entre las protecciones de tipo digital con respecto a las protecciones de última generación los relés numéricos, las ventajas y desventajas que se muestran en
la Tabla 4 son las ventajas o desventajas que se tendrán con respecto a las protecciones de tipo electromecánicas y las de estado sólido\(^4\).

### Tabla 4. Comparación de protecciones eléctricas modernas

<table>
<thead>
<tr>
<th>COMPARACIÓN DE RELÉS DE PROTECCIÓN ELÉCTRICA DIGITALES CONTRA LOS RELÉS NUMÉRICOS</th>
<th>RELÉS DIGITALES</th>
<th>RELÉS NUMÉRICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUEDEN AGRUPARSE DIFERENTES PROCESOS DE PROTECCIÓN CON UNA MISMA INFORMACIÓN BÁSICA</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>ROBUSTES ANTE LAS VIBRACIONES Y GOLPES</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>NO ES NECESARIO EL MANTENIMIENTO DE RUTINA</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>AJUSTE SENCILLO</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>BAJO CONSUMO Y ALTO RENDIMIENTO DE LOS TRANSFORMADORES DE CORRIENTE</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>TAMANO REDUCIDO, ÓPTIMA UTILIZACIÓN DEL ESPACIO EN TABLERO</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>PRUEBAS OPERACIONALES INTEGRADAS (SIMPLIFICA LAS PRUEBAS DE RUTINA)</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>AMPLIA GAMA DE CARACTERÍSTICAS PARA PROTECCIONES MÁS EFECTIVAS</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>ADECUADOS PARA INSTALACIONES EN AMBIENTES HUMEDOS Y NO MUY CORROSIVOS CON TEMPERATURAS HASTA 70° C</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>OPCIÓN DE MONITOREO Y CONTROL REMOTO</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>ACCESO A LA INFORMACIÓN POR MEDIO DE COMUNICACIÓN</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>FUENTE DE ALIMENTACIÓN UNIVERSAL CC/CA</td>
<td>VENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>RUTINAS DE AUTODIAGNÓSTICO</td>
<td>DESVENTAJA</td>
<td>VENTAJA</td>
</tr>
<tr>
<td>MAYOR COSTO INDIVIDUAL</td>
<td>DESVENTAJA</td>
<td>DESVENTAJA</td>
</tr>
<tr>
<td>SU SETEO REQUIERE DE PERSONAL ESPECIALIZADO Y DE MAYOR PREPARACIÓN TECNOLÓGICA</td>
<td>DESVENTAJA</td>
<td>DESVENTAJA</td>
</tr>
<tr>
<td>ESTA SUJETA A FALLAS DE PROGRAMACIÓN</td>
<td>DESVENTAJA</td>
<td>DESVENTAJA</td>
</tr>
</tbody>
</table>

Fuente: El Autor

El gran paso dentro de la evolución de las protecciones eléctricas fue el diseño de las protecciones digitales, este tipo de protección brinda mucho más seguridad a los sistemas de potencia que están protegiendo también ayuda al operador o al ingeniero a cargo del departamento de protecciones eléctricas en una empresa al momento de ocurrir un evento sobre el equipo protegido por

---

\(^4\) GERS, Juan M, Aplicación de protecciones eléctricas a sistemas de potencia: Universidad del Valle.
medio del registrador de eventos al cual se puede acceder medio de comunicaciones y utilizando el software pertinente a cada fabricante. Al observar y analizar detalladamente el resultado del registrador de eventos se pueden mejorar los esquemas de protección como también se puede determinar la veracidad de los ajustes cargados al relé de protección.

Estos mismos eventos los almacenan las protecciones de tipo numérico un ejemplo de cómo se muestra en un relé esta ventana de eventos registrados por el equipo de protección durante una falla ocurrida se observa como lo muestra la Figura 5.

**Figura 5. Registro de eventos**

![Figura 5. Registrador de eventos](image)

Un registrador de eventos indica el momento exacto en el que se activó la función de protección correspondiente a la falla presentada en el equipo protegido, la ventana que muestra el software del relé es igual a la que se
muestra en la Figura 5, estos valores se obtuvieron durante una prueba realizada al relé de distancia que protege la línea de 230 kV que sale de la subestación Gilgel Gibe asía la subestación Sebeta estas dos subestaciones se encuentran en Ethiopia. La ejecución de este proyecto fue realizada por Siemens. La ventana del registro de fallas muestra seis columnas en la primera muestra el número de registro de la falla este número esta asignado dentro del software a la función determinada en esta prueba, el número 01335 indica que se presentó la función de sobrecorriente a tierra 50N/51N en la segunda columna la cual describe la función correspondiente al número estipulado en la primera columna.

La tercera columna indica el valor en el que se encuentra la variable, si se encuentra activada, desactivada o si presenta un registro numérico. Para el caso el número 01335 se encuentra activado en ON. La cuarta columna muestra el registro de tiempo o la estampa de tiempo en que se originó el cambio de estado de la variable activada por el relé de protección para el número 01335 presentó un tiempo de 14 ms.

Con estas primeras cuatro columnas se puede determinar si la función de protección que se está probando realmente la activó el relé y si dentro de este registro no se muestra, indica que el relé presenta un problema en la actuación, determinando con estos factores que el relé de protección se tiene que cambiar o se esta presentando un problema en el diseño del control del equipo protegido. Las otras dos columnas son de información la cual indican el tipo de señal y en que lugar se originó.

2.5 Evolución de los IED de Protección y comunicación

Las primeras investigaciones en el campo de la protección computarizada comenzaron en la década de los 60, cuando las computadoras digitales comenzaron sistemáticamente a reemplazar las herramientas tradicionales empleadas para el análisis de los sistemas de potencia. Inicialmente se resolvieron los problemas de flujos de carga, de cortocircuito y de estabilidad empleando nuevos programas con resultados satisfactorios.

El uso de software para protección fue un paso posterior que comenzó como una consecuencia del desarrollo del hardware, junto con el trabajo llevado a cabo sobre los algoritmos de matemáticas y de protección. No obstante esto, el uso de los computadores para protección no fue viable al principio, debido a las dificultades para reunir los requerimientos de tiempo de respuesta. Con la llegada de los microprocesadores con 16 bits en los 70, los computadores más rápidos y económicos fueron construidos, permitiendo que los algoritmos existentes fueran implementados en el diseño de los relés de protección y los dispositivos de protección se produjeron usando esta tecnología y consecuentemente fueron referidos como una protección numérica.
De esa forma fueron evolucionando los equipos de protección pero también trajeron de la mano la evolución de los protocolos de comunicación por la necesidad que se presentaba de querer automatizar y poder controlar remotamente los equipos de seccionamiento y corte de la subestación sin necesidad de tener una persona constante en la subestación minimizando de ese modo las grandes interrupciones por la demora en la ejecución de las maniobras de cierre de los equipos de corte y seccionamientos en las subestaciones. En la Figura 6 se puede observar como hasta la actualidad se ha presentado un crecimiento y mejoría de los equipos de protección como también se puede observar como crecen los protocolos de comunicación.

**Figura 6. Evolucion de IEDs**

La Figura 6 muestra como una familia de IEDs ha evolucionado desde la protección electromecánica hasta la protección de relés numéricos, con esta evolución se observa que la velocidad en la transmisión de datos también ha crecido brindando una respuesta rápida ante eventos o señales enviadas al sistema de potencia, el incremento en la velocidad de transmisión de datos garantiza al centro de control tener una ejecución y visualización de los equipos de corte y seccionamiento en tiempo real⁵.

---

⁵ Sollecito, Larry, GE digital energy, The impact of distributed 18 generation, Intelligent grid, protection automation and control, magazine, summer 2008, volume 5 artículo 38 canada.
3 APLICACIÓN DE LA NORMA IEC 61850

En el ámbito de la protección y automatización de subestaciones, la publicación de la norma internacional IEC 61850 para la automatización de subestaciones, en vigor desde 2005, se considera un avance importante en la tecnología de la energía eléctrica.

Este gran paso ha sido el resultado de la aplicación de la tecnología más avanzada de la información y las comunicaciones a un campo que tradicionalmente se limitaba a la transmisión de bits y bytes por cable.

Una vez que se ha realizado la transición a la tecnología de información y comunicaciones, se ha abierto todo un mundo de nuevas oportunidades que mejoran la compleja tarea de la ingeniería de los sistemas de automatización de subestaciones.

Grandes empresas han dado el paso siguiente al desarrollar un potente entorno de ingeniería para la automatización de subestaciones, desde la especificación del sistema de automatización hasta la prueba de los sistemas.

Gracias a esta potente caja de herramientas, estas grandes empresas ofrecen sistemas de automatización de subestaciones y proporcionan un funcionamiento sin altibajos en las instalaciones del cliente cuando son necesarios el remodelamiento o el mantenimiento.

3.1 PARADIGMA DE LAS COMUNICACIONES EN LAS SUBESTACIONES

Hace décadas, el objetivo principal de los ingenieros de subestaciones era desarrollar componentes fiables, como los transformadores o los interruptores, y conectarlos de forma simple para cumplir los requisitos de la subestación.

Las señales necesarias para el control del funcionamiento de la subestación se transmitían con un bajo ancho de banda a través de conexiones directas por cable. Los ingenieros diseñaban los sistemas de control de forma que se transmitiera el mínimo número de bytes para que el funcionamiento fuera fiable.

Los protocolos que se precisaban para la comunicación de datos estaban diseñados para adaptarse a esta grave limitación del ancho de banda.

Con posterioridad, cuando se extendieron las tecnologías de comunicaciones más potentes, como Ethernet, y los protocolos de red, como TCP/IP, se

---

adaptaron los protocolos tradicionales para que funcionaran con TCP/IP-Ethernet. Aunque el uso de Ethernet y TCP/IP ofrecía más posibilidades para el control de subestaciones, era un método poco ambicioso, ya que admitía las mismas capacidades básicas de los sistemas de energía eléctrica que la versión de enlace serie.

Los ingenieros siguieron utilizando los mismos protocolos diseñados anteriormente para minimizar los bytes en los enlaces por cable y no aprovecharon las enormes posibilidades adicionales que ofrecían los modernos conceptos de la tecnología de la información.

Cuando quedó claro que se producirían importantes avances a consecuencia de aplicaciones más versátiles, la comisión técnica TC57 de la IEC preparó un nuevo protocolo para la automatización de subestaciones, que entraría en vigor a partir de 2005 y que se materializó en la norma IEC 61850\(^7\).

En muy poco tiempo, la IEC 61850 se convirtió en la norma mundial para la automatización de la electricidad pública, y en la actualidad los clientes solicitan que los suministradores sigan esta norma para casi todas las nuevas subestaciones que se construyen en el mundo.

El paso más importante detrás de esta norma es la aplicación consiguiente de conceptos de tecnologías modernas de información y comunicaciones, convirtiendo a la IEC 61850 en el iniciador de tendencias para otras áreas de la automatización\(^8\).

Con este enfoque, los objetos físicos de una subestación se pueden describir con un conjunto de aspectos tales como su posición en la subestación, su fin principal, su estado físico y sus requisitos de control. Otorgando nombres normalizados a todos los componentes (llamados nodos lógicos en la presentación abstracta de la subestación) y a sus diversos aspectos, se establece una configuración que es neutra con relación al proveedor concreto de los equipos. La norma describe asimismo la forma en que los nodos lógicos se comunican entre sí y con sistemas de control de mayor nivel en la subestación o con cualquier otro sistema de control externo.

### 3.2 DISPOSITIVOS INTELIGENTES

Para hacer total uso de las posibilidades de los potentes sistemas de comunicación, los dispositivos de una subestación deben poder comunicarse y

---

aportar un amplio conjunto de datos. Este requisito se refleja asimismo en su nombre IEC 61850: (Intelligent Electronic Devices) IED.

Los nodos lógicos de los IED (“Intelligent Electronic Device”), que representan una parte funcional típica que, por ejemplo, puede compendiar determinado equipo físico, exponen medios de control sobre dicho equipo o representa una función de protección. Consideremos, por ejemplo, un interruptor automático.

La norma define un determinado nodo lógico para identificar un interruptor dentro de la red y, a modo de contenedor de la información acerca de la posición del interruptor (abierto, cerrado), el número de operaciones, los amperios totales conmutados, la capacidad restante de operaciones o el estado de su mecanismo de acción, entre otros.

La comunicación con el IED (“Intelligent Electronic Device”) a través de la IEC 61850 permite que el sistema de automatización de la subestación identifique de forma automática el dispositivo cuando se le conecta. “Enchufar y utilizar” es una función conocida de todo usuario de ordenador personal cuando conecta un dispositivo externo. Este concepto facilita la instalación de una subestación.

3.3 NORMA IEC 61850

La arquitectura de protección y control de una subestación actual difiere sustancialmente de la arquitectura de una subestación clásica por la aparición de los equipos programables de protección y control de cada posición así como por el equipo que realiza las labores de SCADA local y enlace con el telemando y por las comunicaciones establecidas entre ellos.

Esto ha condicionado también la realización de los proyectos de ingeniería dando paso, junto a los esquemas unifilares y desarrollados tradicionales, a la definición de las funciones lógicas realizadas por los nuevos equipos, la definición de las redes de comunicaciones, protocolos de comunicación empleados, etc.

Hasta ahora los fabricantes de equipos de protección y control han desarrollado sus equipos, organizando sus funciones y empleando los protocolos de comunicaciones de una manera no coordinada, lo que genera tanto a la hora del proyecto como a la hora de la explotación de la instalación problemas de integración de equipos de diferentes fabricantes.

El propósito durante muchos años ha sido definir una arquitectura de comunicaciones que permitiera una integración de los IED’s (Intelligent Electronic Device) dentro de elementos de más alto nivel. Una infraestructura

---

que sea independiente del fabricante y que permita a elementos de varios fabricantes ser integrados conjuntamente.

La norma IEC 61850 trata de definir el bus de comunicaciones de la subestación teniendo principalmente los siguientes objetivos:

- Que datos están disponibles, como son nombrados y descritos.
- Como pueden estos datos ser accedidos e intercambiados.
- Como se conectan los elementos a las redes de comunicaciones.

A diferencia de la utilización de protocolos de comunicación estándar (DNP3, MODBUS, etc) donde los datos del emisor son “traducidos” según el “lenguaje” del protocolo y es necesario, que en el receptor se conozcan las mismas claves para volverlo a traducir (existiendo una pérdida de contexto) en la norma IEC 61850 los datos a transmitir se dividen en grupos lógicos y cada uno de ellos a su vez se dividen en nodos lógicos, de tal forma que todos los datos que puedan generarse en la subestación queden encuadrados en uno de estos grupos.

3.4 NUEVAS OPORTUNIDADES PARA LOS CLIENTES

La norma IEC 61850 se ha diseñado para proporcionar a los ingenieros la posibilidad de llevar a cabo todas las funciones que se manejen en una subestación. Pero para ellos, el camino entre la mera oportunidad y la herramienta real que utiliza con eficacia esas oportunidades es un gran reto: se deben superar muchos obstáculos técnicos valiéndose de la creatividad de los expertos en la tecnología de la información.

Las grandes empresas del sector eléctrico han avanzado mucho en esta dirección y en la actualidad están en disposición de utilizar una ingeniería ya madura para la automatización de subestaciones desde la especificación a la prueba de aceptación en las instalaciones.

Este entorno de ingeniería no sólo es compatible con el proceso de diseño, sino que también ofrece un valor añadido cuando se deben remodelar o ampliar subestaciones ya existentes y cuando las partes antiguas de la configuración no satisfacen la nueva norma IEC 61850.

Los pasos innovadores que se tomaron constituyen un ejemplo casi clásico de un proceso de innovación: desarrollo de métodos y herramientas de ingeniería de software, como la prueba automatizada de códigos de programación y

---

10 IEEE Standard 1346, IEEE Recommended Practice for Evaluating Electric Power

comprobaciones de coherencia entre arquitecturas, que se aplican posteriormente en el campo tradicional de la automatización de subestaciones, un enfoque habitual para el beneficio mutuo entre distintas tecnologías.

A continuación se presentan algunos ejemplos que demuestran el poder de la aplicación de las herramientas de prueba de sistemas basada en los conceptos de modelización de la IEC 61850. Muestra los elementos principales de un sistema de automatización de subestación diseñado según la norma IEC 61850.

**Figura 7: Sistema de automatización según IEC 61850**

El envío de mensajería goose (generic object oriented substation event) se realiza a través de los IED’s (Intelligent Electronic Device) que se encuentran conectados a una red física como lo es una red ethernet, la forma en la que se envía la mensajería goose (generic object oriented substation event) entre equipos como se muestra en la figura 4 el IED X envía un mensaje a los IED Y y al IED Z estos IED´s (Intelligent Electronic Device) son relés de protección los cuales tiene las capacidades de manejar la mensajería goose (generic object oriented substation event) con unas capacidades máxima en velocidad de 115200 baudios con una distancia máxima de 15 metros para un puerto de comunicaciones RS-232, la figura 4 muestra como se comunican entre los relés de protección intercambiando información ante un cambio de estado que se haya presentado en uno de ellos, en el IED Y el relé de protección no recibe el mensaje por multiples razones una de ellas es una falla en el relé, otra que el medio de comunicación físico se haya interrumpido o dañado es la única forma
de que un IED’s (Intelligent Electronic Device) no pueda responder ante una petición o intercambio de información con otros relés de protección.

La configuración de los IED’s (Inteligent Electronic Device) en una estructura más sólida se puede observar en la figura 5 un esquema completo de control y protecciones utilizando la norma IEC 61850 por medio de la mensajería goose (generic object oriented substation event), la topología de una red de comunicación para los equipos de protección dentro de una subestación puede ser tan compleja como grado de tensión se presente en la subestación.

En este caso se cuenta con un esquema de comunicaciones a modo de ejemplo y el cual se aplica en proyectos de modernización de subestaciones a través de la normatividad IEC 61850.

**Figura 8: Arquitectura de redes de comunicación**

![Figura 8: Arquitectura de redes de comunicación](attachment:figura8.png)

En la figura 6 se observa un esquema típico de las redes de comunicación, esta configuración muestra la flexibilidad y la interoperabilidad que tiene la norma IEC 61850 con IED (“Intelligent Electronic Device”) de otros fabricantes brindando con esto que los equipos que se tengan en la subestación tengan un protocolo de comunicación abierto se pueden integrar y subirse hasta el centro de control para ser supervisado por medio de la mensajería GOOSE (Generic Object Oriented Substation Event), estos esquemas como el de la figura 6 se pueden encontrar en las subestaciones eléctricas dentro de las bahías, los IED (“Inteligent Electronic Device”) pueden comunicar los valores...
muestreados de tensiones e intensidades por medio de los adecuados servicios de comunicaciones periódicas\textsuperscript{13}.

Las distintas bahías se intercambian después los datos sobre eventos, definidos por el servicio GOOSE (Generic Object Oriented Substation Event), normalmente mediante un bus de estación. Este bus, que proporciona la conexión física con el nivel de supervisión, transporta además la comunicación vertical con los dispositivos del nivel de la estación y los centros de control de red que emplean el protocolo MMS.

Con las definiciones establecidas en la norma IEC 61850, se puede crear un modelo virtual de la subestación, planificando todas las funciones de los IED (“Intelligent Electronic Device”) y los canales de comunicaciones.

En el proceso de diseño de una nueva subestación, los ingenieros proyectan el sistema de automatización de la subestación, que puede cargarse en la nueva herramienta de prueba a fin de establecer el modelo virtual de la misma desde una etapa muy temprana. La herramienta de prueba puede también crear el modelo virtual cuando se conecta a una estación de control ya existente, siempre que esté configurada de acuerdo con la norma IEC 61850.

Este paso garantiza que es completa y coherente, y que no es preciso un examen posterior a través del sistema de control. El propio sistema de control se puede probar de manera parecida cuando se conecta a la herramienta.

La herramienta comprueba la adecuada definición de los nombres o la configuración de informes y eventos, simula todos los dispositivos de la subestación que debe considerar el sistema de control. Esto tiene la gran ventaja de que ya se pueden llevar a cabo pruebas en un entorno de oficina en vez de tener que hacerlo a pie de obra. Ilustra directamente el salto paradigmático cuando se hacen las pruebas con el nuevo entorno de herramientas IEC 61850.

Mientras en el enfoque clásico los dispositivos tenían que estar físicamente presentes y conectados al sistema de control, la nueva herramienta simula los IED (“Intelligent Electronic Device”), que se someten a una comprobación previa de coherencia, seguida por pruebas rápidas y eficientes en un entorno de oficina. También es posible el método alternativo. Si se dispone de los IED (“Intelligent Electronic Device”) reales sin tener instalado un sistema de control, este se puede conectar directamente a la herramienta, que hará las veces de un sistema de control. Por supuesto, también se puede probar con el nuevo programa el correcto funcionamiento del tráfico GOOSE (generic object oriented substation event). Cuando se comprueba la respuesta a la

interconexión lógica de los IED (Intelligen Electronic Device”) reales, posiblemente en combinación con IED (“Intelligen Electronic Device”) simulados, se pueden detectar fácilmente los fallos en la automatización de la
subestación
14.

De esa forma, se pueden ejecutar en breve tiempo varios ciclos de pruebas, examinando todo el espectro de posibles casos reales. Para lograr una arquitectura de comunicación se debe tener un canal de comunicación por el cual se lleven los datos que se recogen de los equipos de seccionamiento y de corte ubicados en el patio de la subestación eléctrica.

3.5 Comparación de protocolos de comunicación


<table>
<thead>
<tr>
<th>IEC 60870-5-103</th>
<th>PROFIBUS FMS</th>
<th>DNP V3.00</th>
<th>Modbus</th>
<th>UCA2</th>
<th>IEC 61850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores Medidos</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Sincronización de Tiempo</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>No</td>
<td>✔</td>
</tr>
<tr>
<td>Oscilografía</td>
<td>✔</td>
<td>✔</td>
<td>No</td>
<td>No</td>
<td>✔</td>
</tr>
<tr>
<td>Bus de Comunicación de Proceso</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Modo de Comunicación</td>
<td>Maestro/ Esclavo</td>
<td>Maestro/ Esclavo</td>
<td>Maestro/ Esclavo</td>
<td>Evento Orientado</td>
<td>Evento Orientado</td>
</tr>
<tr>
<td>Velocidad de Transmisión [Mbit/s]</td>
<td>0.19</td>
<td>12</td>
<td>0.12</td>
<td>0.12</td>
<td>100</td>
</tr>
</tbody>
</table>


Los protocolos de comunicación fueron los que comenzaron la automatización de las subestaciones eléctricas, a través de este medio de empaquetamiento de datos es posible desde un lugar remoto supervisar y maniobrar los equipos de seccionamiento y corte de energía en una subestación de media y alta tensión. En la tabla 5 se puede observar la comparación entre los protocolos que marcaron una pauta en los esquemas antiguos de protección y comunicación en las subestaciones eléctricas, se presentan algunas diferencias significativas en comparación con la normatividad IEC 61850 una de las diferencias que se presentan con respecto a los protocolos conocidos

como DNP3, Modbus entre otros es el modo de comunicación, en la normatividad IEC 61850 no se presentan los niveles gerárquicos que se presentan en los procolos de comunicación existentes, gracias al tipo de comunicación que se presenta por medio de la mensajería GOOSE (generic object oriented substation event) se puede indagar un IED (“Intelligen Electronic Device”) desde otro IED (“Intelligen Electronic Device”) e intercambiar o compartir información haciendo más fácil y rápido la ejecución de una orden dentro del sistema.

La velocidad de transmisión de datos es otro punto marcante ante los procolos mencionados en la tabla 5 en comparación con el IEC 61850 se tiene una tasa de transferencia de datos de 100 Mbit/s logrando con esta velocidad que una orden se ejecute en menor tiempo que cuando se ejecuta atraves de uno de los procolos mostrados en la tabla 5 los cuales presentan una velocidad máxima de 0.19 Mbit/s.

De los beneficios que brinda la norma IEC 61850 se pueden destacar las ventajas y las desventajas con respecto a los esquemas antiguos en los que se utiliza un protocolo tipo gerárquico con respecto al utilizado por la norma IEC 61850 atraves de la mensajería GOOSE (generic object oriented substation event) el cual responde a eventos orientados. En la tabla 6 se muestran las diferencias entre los esquemas de pruebas de protecciones y comunicación entre los IED (“Intelligen Electronic Device”) que se tengan integrados al sistema de control.

**Tabla 6. Diferencia entre Esquemas de pruebas de protecciones eléctricas**

<table>
<thead>
<tr>
<th>Comparación entre los esquemas antiguos de protecciones eléctricas y la norma IEC 61850 a través de la mensajería goose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pruebas de esquemas IEC 61850</strong></td>
</tr>
<tr>
<td>ventaja: Las pruebas en los esquemas modernos se pueden llevar a cabo en un entorno de oficina en vez de tener que hacerlo a pie de obra</td>
</tr>
<tr>
<td>ventaja: Facil integración de IED's (Inteligent Electronic Device) que sea independiente del fabricante y permitir a elementos de varios fabricantes ser integrados conjuntamente</td>
</tr>
<tr>
<td>ventaja: Transmisión de multiples datos entre si</td>
</tr>
<tr>
<td><strong>Pruebas de esquemas Antiguos</strong></td>
</tr>
<tr>
<td>Desventaja: Las pruebas en los esquemas clásicos los dispositivos tenían que estar físicamente presentes y conectados al sistema de control</td>
</tr>
<tr>
<td>Desventaja: No permite la integración de IED's (Inteligent Electronic Device) de varios fabricantes ser integrados conjuntamente</td>
</tr>
<tr>
<td>Desventaja: Transmisión de bits por bytes por cable</td>
</tr>
</tbody>
</table>

Fuente: El Autor
4 METODOLOGÍA DE PRUEBAS EN LOS ESQUEMAS MODERNOS Y CLÁSICOS DE PROTECCIÓN

4.1 Esquema moderno de pruebas de protección

En los sistemas modernos de control y protección son muy fáciles de probar ya que se cuenta con un bus de comunicación por el cual se puede interrogar cualquier IED que se encuentre conectado a ella en la figura 7 se observa como el equipo de pruebas secundarias (OMICRON) se conecta a la red de la subestación comensando así las pruebas de los equipos de protección.

Figura 9. Metodología de pruebas en esquemas modernos de protección

En la figura 7. Se muestra una topología en anillo la cual puede ser accesada desde varios servidores y de la misma forma estos servidores se pueden conectar a varios clientes simultáneamente.
A continuación se muestra una aplicación y la metodología de pruebas de los relés de protección en una subestación de 230 kV ubicada en la ciudad de Zapallal (Perú) esta aplicación se realiza para un esquema de interruptor y medio por medio de la normatividad IEC 61850 aplicando el envió de la
mensajería GOOSE (generic object oriented substation event), si se compara este mismo ejemplo utilizando un cableado convencional se presentaría una tablero lleno de cable como el que se muestra en la figura 8.

**Figura 10. Cableado convencional en subestación de 230 kV**

Figura 10. Fuente: El Autor

Todo el cableado que se presenta en la figura 8 son las señales de posición como también las señales de medida que se tienen que cablear para que pueda funcionar un esquema de recierre con lógica líder-seguidor para una bahía de interruptor imedio.

Cuando se utiliza la norma IEC 61850 el cableado que se tendrá en los tableros es minimo como se muestra en la figura 9 la llegada de las señales y medidas de otros equipos por medio de fibra óptica al equipo que requiere de las respectivas señales.

**Figura 11. Cableado moderno utilizando la norma IEC 61850**

Figura 11. Fuente: El Autor
4.2 Implementación de la función de recierre a través del protocolo IEC 61850.

La implementación que se mostrará a continuación se realizó en la ciudad de Zapallal en Perú por medio de la empresa Siemens; esta función de recierre con lógica líder-seguidor en el sistema automático de la subestación se realizó a través del protocolo IEC 61850 con el envío de mensajería GOOSE, en la cual se muestra como se comparte información entre los IEDs de cada una de las secciones del campo de interruptor imedio.

En esta implementación se podrá observar en las tablas 7, 8 y 9 como se arreglan las señales que se envían y que se reciben de un IED o de otro por medio de la mensajería GOOSE.

4.2.1 ESQUEMA DE INTERRUPTOR IMEDIO

Unifilar de la subestación Zapallal (Perú) indicando con nombre propio cada uno de los equipos que se encuentran en el patio de la subestación.

**Figura 12. Unifilar S/E Zapallal**
4.2.2 PRINCIPIOS OPERATIVOS

Los siguientes principios operativos se siguieron para la implementación de la función de recierre y verificación de sincronismo.

1. Cada relé 79 realizará la selección de tensiones y verificación de sincronismo de su interruptor asociado. Para poder hacerlo se le cablearán a sus entradas binarias las posiciones (abierto) de los equipos de patio del mismo corte. Las posiciones de los otros cortes vendrán via GOOSE (generic object oriented substation event) de otros IEDs (de los relés 79 de los otros cortes Y de los BCUs de los otros cortes). Se llevarán las posiciones repetidas desde dos IEDs diferentes con el fin de que ante falla de un IED (por ejemplo, de un relé 79 de otro corte) no se afecte la función de verificación de sincronismo de los otros cortes.

2. También para poder realizar la verificación de sincronismo se cablearán a entradas binarias de los relés 79 de los cortes A y C las señales de falla de los PTs de Barra y de Línea. Las señales de falla de PTS de la otra barra y de la otra línea vendrán via GOOSE (generic object oriented substation event) de otros IEDs (de los relés 79 y de los relés 21P del corte correspondiente a la otra barra). Se llevarán las posiciones repetidas desde dos IEDs diferentes con el fin de que ante falla de un IED (por ejemplo, de un relé 79 de otro corte) no se afecte la función de verificación de sincronismo de los otros cortes.

3. Siempre que el Interruptor del corte asociado a la barra (Corte A o Corte C según la línea de la que se esté hablando) esté disponible para hacer recierres, este será el escogido como interruptor líder. Solo si este interruptor no está disponible para ser líder podrá ser líder el interruptor del corte B.

4. El interruptor del corte B será el único que podrá ser seguidor. Los interruptores de los cortes A y C o son líderes, o estarán bloqueados para recierre.

5. Un interruptor estará bloqueado para recierre cuando:
   - Este abierto antes de la falla.
   - Sus seccionadores de corte se encuentren abiertos.
   - Exista señal de indisponibilidad propia del interruptor.
   - Su relé de recierre se encuentre indisponible.
   - Se relé de recierre se encuentre en prueba.
   - El seccionador de la línea se encuentra abierto.
   - Existe señal de disparo definitivo de alguna de las protecciones de distancia.
   - Si existe falla del PT de la línea.
   - Para el interruptor del corte A, si existe falla del PT de la barra B.
6. En el relé de recierre del corte B la función de recierre se mantendrá apagada. Solo se arrancará en este relé cuando el interruptor del corte B sea el líder para una determinada línea y arranque una protección de distancia correspondiente a dicha línea.

7. El recierre del seguidor (corte B) no se realiza mediante la función de recierre del relé de dicho corte. En su lugar un CFC se encarga de realizar un cierre manual de este interruptor.

8. Si el interruptor del corte B es el seguidor y no está bloqueado para recierre, este recerrará cuando se cumpla un tiempo t (configurable) después de que se haya cerrado el interruptor líder. Este tiempo se podrá configurar presionando la tecla funcional F4 del relé de recierre del corte B. Podrá ser ajustable entre 100ms y 10000ms.

**Advertencia:** El relé no verifica si el valor está entre estos límites. Sin embargo, si el valor ingresado no está entre este rango, la función de recierre del seguidor puede no funcionar.

9. Las posiciones del selector de recierre (Desconectado – Monofásico – Trifásico – Monofásico y Trifásico) se llevarán a los dos relés de recierre adyacentes a la línea. De esta forma, aun si uno de estos relés está indisponible el recierre podrá seguirse ejecutando con el otro relé.

10. Ante fallas monopolares los relés de distancia emitirán disparos monofásicos o trifásicos al interruptor líder según la posición del selector de recierre. Los disparos al interruptor seguidor (Corte B) serán monofásicos únicamente cuando se cumplan las siguientes condiciones:

   - El interruptor correspondiente a la otra barra se encuentre abierto
   - El interruptor del corte B se encuentre disponible para recerrar.

11. Una vez arrancado un recierre y hasta que se cumpla el tiempo de reclamo del recierre, los disparos monofásicos de las protecciones 21P y 21S quedan bloqueados. De esta forma, ante el evento de una falla evolutiva las protecciones dispararán de forma tripolar.

### 4.2.3 IMPLEMENTACIÓN DEL GOOSE

A continuación se describen de manera de ejemplo las señales que se configuraron para llegar via GOOSE (generic object oriented substation event) a los relés de recierre del corte A (79_CA), del corte B (79_CB) y a la protección 21P de la línea del corte A del diámetro 3. Las señales que llegan a los otros relés (21S de la línea del corte A, 79_CC, y 21P y 21S de la línea del corte C) son completamente análogas a estas.

La tabla 7 muestra el arreglo de información via GOOSE (generic object oriented substation event) recibido por el relé 79_CA del diámetro 3:
La tabla 7 tiene tres columnas la primera columna es el origen (desde) de la señal dentro de esa columna se divide en dos columnas en la primera se muestra el campo donde se toma la señal y la señal que se quiere enviar, en la segunda columna muestra el destino o hasta donde llega la señal esta columna también se divide en dos una muestra el campo al que llegara la señal y la otra muestra la señal que se ejecuta cuando llega la señal que se envio desde el campo adyacente y la ultima columna es la descripción de la señal que se envia por medio de la mensajería GOOSE.

<table>
<thead>
<tr>
<th>DESDE</th>
<th>HASTA</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3CA_21P</td>
<td>Trip 3p</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>Trip 1p</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>Definitive Trip</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Trip 3p</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Trip 1p</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Definitive Trip</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>79 Pick Up</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>OrdApeInt</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>CB_SE2_Abi</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>CB_SE1_Abi</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>CB_IN_Abi</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>MCBLTPCC</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>MCBLTPBA</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>SL</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>CC_SE_Abi</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>CC_SA_Abi</td>
<td>D3CA_79</td>
</tr>
<tr>
<td>D3CC_21P</td>
<td>CC_IN_Abi</td>
<td>D3CA_79</td>
</tr>
</tbody>
</table>

Tabla 7. Arreglo de Informacion via GOOSE (generic object oriented substation event) recibido del corte CA.
La tabla 8 muestra el arreglo de información via GOOSE (generic object oriented substation event) recibido por el relé 79_CB del diámetro 3:

**Tabla 8. Arreglo de Información via GOOSE (generic object oriented substation event) recibido CB.**

<table>
<thead>
<tr>
<th>DESDE</th>
<th>HASTA</th>
<th>seccionador SL del corte C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3CA_21P</td>
<td>MCBPTLCA</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>MCBPTBB</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>Trip 3p</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>Trip 1p</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>Definitive Trip</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21P</td>
<td>79 Pick Up</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Trip 3p</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Trip 1p</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>Definitive Trip</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_21S</td>
<td>79 Pick Up</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>MCBPTLCA</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>MCBPTBB</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>IntCAbloq</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>CA_SL_Abi</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>CA_SE_Abi</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>CA_SB_Abi</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>CA_IN_Abi</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>79CAbloq</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_BCU</td>
<td>SL</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_BCU</td>
<td>SE</td>
<td>D3CB_79</td>
</tr>
<tr>
<td>D3CA_BCU</td>
<td>SB</td>
<td>D3CB_79</td>
</tr>
</tbody>
</table>

Fuente: El Autor
<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3CA_BCU INT</td>
<td>Indicación doble de la posición del interruptor del corte A</td>
<td></td>
</tr>
<tr>
<td>D3CB_BCU INT</td>
<td>Se ha dado orden de apertura al interruptor del corte B desde el sistema de control</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P MCBPTLCC</td>
<td>Indicación de falla del PT de la línea del corte C</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P MCBPTBA</td>
<td>Indicación de falla del PT de la Barra A</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P Indisponible 79-3</td>
<td>Indicación de que el relé de recierre del corte C está indisponible</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P Indisponible 79-1</td>
<td>Indicación de que el relé de recierre del corte A está indisponible</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P Trip 3p</td>
<td>El relé 21P de la línea del corte C ha emitido un disparo trifásico</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P Trip 1p</td>
<td>El relé 21P de la línea del corte C ha emitido un disparo monofásico</td>
<td></td>
</tr>
<tr>
<td>D3CC_21P Definitive Trip</td>
<td>El relé 21P de la línea del corte C ha emitido un disparo definitivo</td>
<td></td>
</tr>
<tr>
<td>D3CC_21S 79 Pick Up</td>
<td>El relé 21S de la línea del corte C ha emitido un disparo monofásico</td>
<td></td>
</tr>
<tr>
<td>D3CC_21S Definitive Trip</td>
<td>El relé 21S de la línea del corte C ha emitido un disparo definitivo</td>
<td></td>
</tr>
<tr>
<td>D3CC_21S 79 Pick Up</td>
<td>El relé 21S de la línea del corte C ha sido arrancado (falla en proceso)</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 MCBPTLCC</td>
<td>Indicación de falla del PT de la línea del corte C</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 MCBPTBA</td>
<td>Indicación de falla del PT de la Barra A</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 IntCCBloq</td>
<td>Indicación de que el interruptor del corte C se encuentra bloqueado para hacer recierre (ver condiciones de indisponibilidad más adelante en este documento)</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 CC_SL_Abi</td>
<td>Indicación de que el seccionador SL del corte C está abierto</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 CC_SE_Abi</td>
<td>Indicación de que el seccionador SE del corte C está abierto</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 CC_SA_Abi</td>
<td>Indicación de que el seccionador SA del corte C está abierto</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 CC_IN_Abi</td>
<td>Indicación de que el interruptor del corte C está abierto</td>
<td></td>
</tr>
<tr>
<td>D3CC_79 79CCBloq</td>
<td>El relé de recierre del corte C tiene la función de recierre bloqueada (el interruptor del corte C no es líder)</td>
<td></td>
</tr>
<tr>
<td>D3CC_BCU SL</td>
<td>Indicación doble de la posición del seccionador SL del corte C</td>
<td></td>
</tr>
<tr>
<td>D3CC_BCU SA</td>
<td>Indicación doble de la posición del seccionador SA del corte C</td>
<td></td>
</tr>
<tr>
<td>D3CC_BCU INT</td>
<td>Indicación doble de la posición del interruptor del corte C</td>
<td></td>
</tr>
<tr>
<td>D3CC_BCU SE</td>
<td>Indicación doble de la posición del seccionador SE del corte C</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: El Autor
La tabla 9 muestra el arreglo de información via GOOSE (generic object oriented substation event) recibido por el relé 21P de la línea del corte A del diámetro 3:

**Tabla 9. Arreglo de información via GOOSE (generic object oriented substation event) recibido CA.**

<table>
<thead>
<tr>
<th>DESDE</th>
<th>HASTA</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3CA_79</td>
<td>IntCALider</td>
<td>El interruptor del corte A es el líder</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>BLOQRecMono</td>
<td>El relé de recierre del corte A ha solicitado al relé bloquear los disparos monopolares</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>Rec Mono y Trif Conectado</td>
<td>El selector de recierre se encuentra en la posición “Monofásico y Trifásico”</td>
</tr>
<tr>
<td>D3CA_79</td>
<td>Rec Monofasico Conectado</td>
<td>El selector de recierre se encuentra en la posición “Monofásico”</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>IntCBBlqParaLCA</td>
<td>El interruptor del corte B se encuentra bloqueado para hacer recierre Ver condiciones de indisponibilidad más adelante)</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>IntCALider</td>
<td>El interruptor del corte A es el líder</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>BLOQ79Mono-LCA</td>
<td>El relé de recierre del corte B ha solicitado al relé bloquear los disparos monopolares</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>LCARecMonoYTriC</td>
<td>El selector de recierre se encuentra en la posición “Monofásico y Trifásico”</td>
</tr>
<tr>
<td>D3CB_79</td>
<td>LCARecMono</td>
<td>El selector de recierre se encuentra en la posición “Monofásico”</td>
</tr>
<tr>
<td>D3CC_79</td>
<td>CC_IntFTAb</td>
<td>El polo T del interruptor del corte C se encuentra abierto</td>
</tr>
<tr>
<td>D3CC_79</td>
<td>CC_IntFSAb</td>
<td>El polo S del interruptor del corte C se encuentra abierto</td>
</tr>
<tr>
<td>D3CC_79</td>
<td>CC_IntFRAb</td>
<td>El polo R del interruptor del corte C se encuentra abierto</td>
</tr>
<tr>
<td>D3CC_BCU</td>
<td>INT</td>
<td>Indicación doble de la posición del interruptor del corte C</td>
</tr>
</tbody>
</table>

Fuente: El Autor

4.2.4 CONSECUENCIAS DE LA IMPLEMENTACIÓN

Como puede verse de las tablas de información recibida via GOOSE (generic object oriented substation event) por las distintas protecciones, la información crítica (posiciones de equipos de patio y falla de pts) es llevada via GOOSE (generic object oriented substation event) a cada equipo desde dos fuentes independientes. Por lo tanto, el relé deriva la información de que, por ejemplo, un corte se encuentra cerrado no solamente de las entradas llevadas a los relés de recierre, sino también de las entradas binarias de los BCUs. Por lo tanto, y para poder probar la función satisfactoriamente, deberán conectarse las entradas binarias de todos los IEDs involucrados en la función de recierre de forma simultánea y consistente. Si un campo se muestra como cerrado en el relé de recierre del corte A (los tres polos cerrados), en el BCU este debe
también aparecer como cerrado. Si un polo de este interruptor abre durante una prueba, la indicación de interruptor abierto debe llegar al BCU simultáneamente para que el recierre funcione apropiadamente.

Si se prueba la funcionalidad del recierre ante falla de uno de los relés de recierre, no basta con apagar el equipo si la señal de indisponibilidad no llega como entrada binaria a los relés 21P y 21S de la línea.

Se debe ver esta implementación como un recierre distribuido entre varios IEDs (21P_LCA, 21S_LCA, 79_CA, 79_CB, 79_CC, 21P_LCC, 21S_LCC, BCU_CA, BCU_CB, BCU_CC). Para una adecuada puesta en servicio de la función, se debe cablear al equipo de pruebas OMICRON y simularse todas las entradas y salidas de estos equipos adecuadamente.

Después de analizar detalladamente el ejemplo de la lógica de recierre con maestro-seguidor se puede apreciar lo potente que puede ser el nuevo estándar IEC 61850 atraves de su mensajería GOOSE (generic object oriented substation event) al distribuir diferentes señales entre IEDs ubicados en diferentes secciones del campo de interruptor inmediato, se puede observar en el ejemplo como se comparten información entre los mismos IEDs con el fin de hacer una lógica cableada muy sencilla, económica y con menos puntos de falla, si se aplicara esta misma lógica con un cableado convencional se tendrán que cablear todas las señales y posiciones que se necesiten logrando con esto tener más borneras mas cables y mas puntos de equivocación al momento de conectar una señal proveniente de otro equipo o del campo.

Toda esta lógica implementada via GOOSE (generic object oriented substation event) se realiza con seis relés de protección los cuales se encuentran ubicados 2 relés uno principal y otro de respaldo en el corte A y de igual forma se encuentran los otros cuatro en los cortes B y C comunicados entre ellos por fibra óptica la cual es el medio físico en el cual se llevan las señales de mensajería GOOSE (generic object oriented substation event), con la lógica cableada para aplicar este mismo ejemplo se tendrían que utilizar equipos adicionales que repitan las señales ya que los relés de protección no cuantan con los suficientes contactos para cablear una misma señal que sera compartida con los otros relés.

Definitivamente el desempeño de este nuevo estándar IEC 61850 con el nuevo concepto de mensage de comunicación a nivel de IED (“Intelligent Electronic Device”) llamado GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) es superior a los esquemas de lógica cableada ya que su fundamentación y aplicación se genera a través del software de configuración de los IEDs que se tengan o que se vallan a instalar en una subestación eléctrica para su respectiva automatización, posicionándose en un primer lugar y como un buen avance a la modernización de equipos de protección sin tener que discriminar fabricante alguno, el IEC 61850 marca un cambio significativo
futurista en las subestaciones eléctricas de media y alta tensión pensando solo en mejorar la calidad de la energía entregada al consumidor final y minimizando los constantes mantenimientos que se tienen que realizar periódicamente a los equipo de protección eléctrica, llevando esta minimización de los mantenimientos a cifras económicas se reduciría en un gran porcentaje para las empresas distribuidoras y de transmisión de energía eléctrica trayendo consigo confianza y total seguridad que el sistema que se ha implementado responderá de una manera adecuada en beneficio tanto del cliente como del consumidor final.
CONCLUSIONES

El estándar IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) se está utilizando extensamente en muchos diseños de subestaciones debido a la gran capacidad que tiene que interconectar diversos equipos de diferentes fabricantes lo que representa una ventaja ya que no depende de protocolos propietarios.

Una característica del estándar IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) es poder interrogar a cada IED (“Intelligen Electronic Device”) para conocer el estado en el que se encuentran los equipos que el está supervisando en posicionamiento y medida, mejorando la calidad de los esquemas de control con respecto a los esquemas de control que se tenían con otros protocolos de comunicación.

Los tiempos en los que el estándar IEC 61850 mediante la mensajería GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) brinda al sistema de control en tiempo real haciendo escaneos de la red cada vez que ocurra un evento, a diferencia de los otros protocolos que se encontraban restringidos por un ancho de banda y por la forma de interrogación punto a punto que se tenía con los equipos que este supervisa.

Debido a que el estándar IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) se utiliza como medio de transmisión físico Fibra Óptica se optiene una alta velocidad de transmisión de los datos, así como una reducción de la interferencia electromagnética ocasionada por los cables de potencia y los equipos de la subestación como también de fenómenos externos como descargas atmosféricas.

La mensajería GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) entre las protecciones brinda un mejor tiempo de ejecución entre las mismas cuando se presenta una falla, de igual forma se presta para hacer uso de funciones que tenga un IED de otro campo sin necesidad que el IED que lo necesita la tenga físicamente instalada.

La flexibilidad a través de la interoperabilidad entre IEDs de diferentes fabricantes es una gran ventaja el cual no limita la actualización de los sistemas escadas que se diseñen por medio del estándar IEC 61850 GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT) a través de la mensajería GOOSE (GENERIC OBJECT ORIENTED SUBSTATION EVENT).
BIBLIOGRAFÍA

1. Sangra Montane, Paulino Protecciónes en las instalaciones eléctricas evolución y perspectivas Segunda Edición en español. MARCOMBO S.A. Gran vía de les corts catalanes, 594 08007 Barcelona (España).


4. GERS, Juan M, Aplicación de protecciones eléctricas a sistemas de potencia: Universidad del Valle.


